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Abstract
Specialized imputation routines for multilevel dataargely available in software packages,
but these methods are generally not equipped to handle a wide range of complexities that are
typical of behavioral science data. In particular, existing imputation schemes differ in their
ability to handle random sp@s, categorical variables, differential relations at lévahd level2,
and incomplete leve? variables. Given the limitations of existing imputation tools, the purpose
of this manuscript is to describe a flexible imputation approach that can accateraativerse
set of twalevel analysis problems that includes any of the aforementioned features. The
procedure employs a fully conditional specification (also known as chained equations) approach
with a latent variable formulation for handling incompletategorical variables. Computer
simulations suggest that the proposed procedure works quite well, with trivial biases in most
cases. We provide a software program that implements the imputation strategy, and we use an

artificial data set to illustratés use.
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A rather large body of methodological literature supports the use of missing data
handling methods that assume a missing at random (MAR) mechanism, whereby the probability
of missing data on a particular variable is fully determined by the \sdat®alues of other
variablegqLittle & Rubin, 2002; Rubin, 1976)The multiple imputation procedure proposed by
Rubin (1987)s an MARbased approach thahjoyswidespread use in a variety of disciplines,
including the behavioral sciences. ifgplementmultiple imputation, a researcher first creates
several copies of the incomplete data set, filling in each with a different set of plausible
replacement values. The complete data sets are then analyzed, and the resulting parameter
estimates and standagdors are pooled into a single set of results. Multiple imputation is
preferable to older approaches such as deletion because it can reduce nonresponse bias and
improve power. Detailed descriptions of multiple imputation are readily available in the
metods literatur¢dEnders, 2010; Graha 2012; Little & Rubin, 2002; Schafer, 1997; Schafer &
Graham, 2002Schafer & Olsen, 1998; Sinharay, Stern, & Russell, 2001; van Buuren, 2012)

Joint modeling and fully conditional specification (FCS; also known asesgigl
regression and chained equations imputation) are the principal imputation frameworks fer single
level data. SchaferOs (1997) classic text popularized the joint modeling strategy that assumes a
common distribution for the incomplete variables.tha context of normally distributed data,
SchaferOs approach repeatediypleplausible population parameters (typically a covariance
matrix and a mean vector) from a probability distribution ases those parameters to define a
multivariate normal distbution, from whichit drawsreplacement data valueCS uses a
similar two-step algorithmic approach (sample parameter valueshegmrameters to define a
distribution of replacement valuebutit draws imputations from a series of univariate

condtional distributiondRaghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; van
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Buuren, 2007, 2012; van Buuren, Brand, Groottusishoorn, & Rubin, 2006)Jnder this
schemeyariables are imputed one at a time, with the filledariable from one sp serving as a
predictor in dlsubsequent imputation steps.

Methodologists have extended the joint model and FCS to multileve{Aiarouhov
& Mutheh, 2010; Carpenter, Goldstein, & Kenward, 20&bjdstein, Bonnet, & Rocher, 2007;
Goldstein, CarpenteKenward, & Levin, 2009; Schafer, 208¢hafer & Yucel, 2002; van
Buuren, 2011, 2012; Yucel, 200&nd specialized imputation routines are widely available in
software packages. For example, the joint model framework is implementaaltisa(Muthen
& Mutheh, 199&P012) the PAN and MLMMM packages in R (Schafer, 2001; Schafer &
Yucel, 2002; Yucel, 2008), MLwWiN and Stata (Carpenter et al., 2011), anqN\i&ter, 2013)
and FCS is available in the R package Mi@&n Buuren et al., 2014)he joint nodel is
equivalent to FCS with singlevel data and multivariate normal variab{elighes, White,
Seaman, Carpenter, & Sterne, 2QBUtmultilevel imputation routines apply different
underlying models, and software packages offer different functiorigligters, Mistler, &
Keller,2016. Simulation and analytic work suggest that the joint model and FCS can readily
accommodate basic random intercept analyses with normally distributed variables, but they
differ beyond tha{Carpenter & Kenward, 2013; Enget al., 2016; Mistler & Enders, 201L6

Enders et al. (203&onclude that existing multilevel imputation routines are good for
very specific tasks, but these methods are generally not equipped to handle a wide range of
complexities that are typical okbavioral science data. In particular, the joint model and FCS
differ in their ability to handle random slopes, categorical variables, differential relations at
level1l and level2 (e.g., contextual effect models, multilevel structural equation modetk), a

incomplete leveP variables. Given the limitations of existing imputation tools, our primary
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goal for this paper is to outline a flexible FCS imputation strategy that can accommodate a
diverse set of twdevel analysis problems that includes any (Hrad the aforementined
features. We provide an applicatisamed Blimgfor Mac and Windowshat implements our
FCS approach, and we use computer simulations to evaluate its performance.

The organization of the paper is as follows. We begin witthieéh description of
completedata Bayesian estimation for a tlavel mode| asthis provides the mathematical
machinery for FCS imputation. Second, we review how FCS is clyragyilied to multilevel
data. Third, we describe complatata Bayesian estimah for a twelevel probit model, as this
provides thévasis for imputing nominal and ordinal variabl&aurth we outline an extension
to FCS that accommodates incomplete nominal and ordinables at levell and level2.

Fifth, we outlinea modificationto FCS thapartitions relations among levélvariables into
within- and betweertluster componentsSixth, we propose an extension to FCS that can
accommodate missing data on lefelariablesFinally, weuse computer simulations to
evalude the modifications to FCS, awge conclude with a data analysis example that
demonstratesur custombuilt FCS software application

Bayesian Estimationfor a Two-Level Regression Model

Like other multilevel imputation scheme&sparouhov & Mutha, 2010 Goldstein et al.,
2007; Goldstein et al., 2009; Schafer & Yucel, 206ZSborrowsfrom established complete
data Bayesian estimationghods formultilevel regression model Multilevel imputation via
FCScan be viewed as@mpletedata Bayesiaanalysiswith an additional step that fills in the
datg conditional on the model parametarsl level2 residualdrom a particular iteratianTo
providesome necessabackground, this section gives a brief overv@the Gibbssampling

algorithm for aBayesian analysis. We focus on a traditional multilevel mimdelnivariate
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normaldatabecause it provides the mathematical machinerfF@®imputation. However, it is
important to emphasize that FCS is not limited to traditional multilevel regnesgidels, as the
resulting imputations ar@pplicable tather multilevel frameworks with nested factors (e.g.,
multilevel structural equation models).

To motivate the ensuing discussion, consider a multilevel model with twelevel
predictors and eandom slope Using notation fronBcott, Shrout, and Weinberg (2018)e

model is

Yy = B, + ﬁlYZij + ﬁZYsij +Ug;+ Uy Yy + € (1)

whereY); is the outcome score for observatian clusterj, Y,; andY;; are levell predictors,f3,

is the intercept, and, and 3, are slope coefficients fof, andY;, respectively.Turning to the

random effectsy, is a residual that capturéetweerclusterresidual variation (i.e., mean

differences) in the outcome, aoglis a randonslope residual thatllows the influence oY, to

vary across clusterszinally, €, is a withincluster residual thatapturesinexplainedevet1

variation In line with a taditional multilevel analysisye assuméhat level2 residualsare

multivariate normal with zero means and an unstructured covariance hatrandwe assume

that levell residuals are normally distributed with a constant variarice This latter

assumption can be relaxed, asBayesian framework readily accommoddteseroscedastic

within-clusterresidual variationKasim & Raudenbush, 1998an Buuren, 2011

! Multilevel models are also known in the literature as mixed effects and random effects models. We use
the phrase multilevel model to emphasize that our imputation routine is designed for data structures with
nested factors. Not all mixed models thabimorate random effects feature this multilevel nesting
structure, andhese examplefll outside of the scope of our work.
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A Bayesiamanalysisviewsregession coefficients, levé& residualsandvariance
parameteras random variables, and a joint distribution describes the relative probability of
different canbinations of parameter values and leeesidual termgiven the dataBayesian
estimationexpressethis joint distribution as a set of full conditional distributions, ar@lilabs
sampleralgorithm iteratively samples values from each distributibne joint distribution for
the model irEquation(1) requires four such conditional distributions, one each for the
regression coefficientthe level2 residuals, the withisluster residual variance, atite level2
covariance matrix Accordingly, theGibbsalgorithm samples thesgpuantitiesn a series ofour
steps with each step conditioning on (i.e., treating as known) the values from previougateps
sample regression coefficients from a distribution that conditions on the data, the current
variance estimas, and the current lev2Iresiduals, (b) sample lev2lresiduals from a
distribution that conditions on the data, the coefficients from the previous step, and the current
variance estimates, (c) sample a lelyeésidual variance from a distribution tltanditions on
the data, the current lev2lcovariance matrixand thecoefficients and residuals froprevious
two steps, and (d) sample a le@etovariance matrix from a distribution that conditions on the
data and the values from the first three step

More formally, the sampling stepsr a single iteration of the Gibbs algorithnare

1O ~MVN(! Y, u®, #59, 04™)
u® ~MVN(u]Y,1 O, #50 of')
2
#30~1G(#51Y,1 0, u0, %) “

%) ~1W(% |Y,! O, u0, #20)
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where ~MVNdenotes a mitivariate normal distribution, ~IG is the inverse Gamma distribution,
and ~IW indicateshie inverse Wishart distributiorEach of the above distributions has a
location and scale parameter that defiteexpected value and varianaad thee quantities
alsodepend ornyperparameters.€., theexpected value and variance) af@respondingprior
distribution. Thesupplemental online material includes a technical appendigitred specific
details for each distribution, as do a number of published resqiaesne & Draper, 2000;
Goldstein et al., 200Goldstein et al., 2009; Kasim & Raudenbush, 1998; Schafer & Yucel,
2002; van Buuren, 2012; Yucel, 2008)

Iterating the ampling steps from Equatid@) many (e.g., several thousand) tinggges
an empirical estimate of each parameterOs marginal posterior distribution, tteechstamdard
deviation of which aranalogougo a frequentist point estimate and stanaardr, respectively
In the context oFCSimputation the previous sampling steps are unchanged, but each iteration
features an additional fifth step tlgenerates imputations based on the current model parameters
and level2 residual termsThus,eachGibbscycle uses the current imputations to execute a
completedata Bayesian analysuiter which it uses the resulting parameter values to generate a
newset of imputationsThe next section details this procedure.

FCS Imputation for Two-Level Data

This section describgle current implementation of multilevel FC$o be consistent
with existing literature and softwatean Buuren, 2011, 2012; van Buureral., 2014)we
restrict our attention to normally distributed lexteVariables, but subsequent sections outline
modifications to FCS that extend its current capabilities. For brevity, we focus on imputation

here andefer interested readersdtherresources that describealysis and poolingrocedures
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for multiply imputed datdEnders, 2010; Rubin, 1987; Schafer, 1997; Schafer & Olsen, 1998;
Sinharay et al., 2001; van Buuren, 2012)

Multilevel FCS imputes variables one at a time, drawemacement values from a series
of univariate distributions that condition on a set of multilevel model parameters2lezstiual
terms, and complete and previously imputed variablesillustrate,consider a set a
incomplete levell variables, idexedq= 1, E , Q. The imputation steps from a single iteration

t of FCS can be summarized symbolically as follows

) (t11) (1) w(t) . (t)
Yl(mis) N(Yl(mis)lYZ ""'YQ X, (1)'u(1))

) (t) (t'1) (t'1) n (t) (t)
YO~ N (Yo IV, YD, YD X (2),u(2))
(3
Y(t) _

®) ) (D ®Y y w® O
o(mis) Yo Yo Yau s Yo s X (q)’“(q))

q(mis) gqllr "g+t1 !

N(Y,
© o) ® w n® o0
Yo(ms N(YQ(miS)lYl oo Yorun X, (Q)’u(Q))

whereY[)., is the variable to be imputed at stgpf iterationt, Y,” is a completed version of

g(mis)

this variable that contains the current imputatie$ denotes a univariate normal distributian,

is a set of complete variables (lexlebr levet2), ! E;)) represents the current set of multilevel
model parameters for incomplete variapig.e., ! ) ={" o) #S()q),$;f;’)} ), andufy) denotes the

current values of the levl residuals for that variabldn words, the equation says to draw
missing values from a normal distributione timéean and variance of which depend on
previouslyimputed and complete variables, multilevel model parameters, ane?lessidual

terms. As noted previously, eadtep ofEquation(3) can be vieweds asequence that performs
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acompletedata Bayesian analysigith Y as the outcomfllowed by an imputation step that

uses! {) andu{) to generataipdated imputations for;" .

To illustratemultilevel FCS reconsider the random slope analysis from Equéliprand
assumehat all variables are incomplet&his analysis is useful because it highlights thaSFC
can tailor the composition of each imputation steacdmommodate the specific features of a
particular analysisnodel(e.g., some variableggquirea random slope, othersquire only
random intercepts). However, it is importantederatethat FCS $ not limited to univariate
regression models, as the resultimgputations ar@pplicable tather multilevel frameworks
with nested factors (e.g., multilevel structural equation models).

To begin,FCSappliesthe Bayesiamstimationsteps from Equatio(®) to the filledin
datafrom the previous iteratigrireatingY; as an outcome ang andY; as predictors. The
resulting parameter i#es and residual ters defineanormal distributiorthat generate,;

imputations

() 0 2
Ylij(mis) ~ Nwlij ! "(Yl))

7 _ (t$1) (t$1) (t$1)
Ylij - #O(Y,) + #I(Yl)Yzij + #Z(YI)YBij + uO(Yl) + ul(Yl)Y2ij

whereY" is a predictedzaluefrom the multilevel modeland O, IS thewithin-cluster

1ij
residual varianceTo simplify the notation, we omit the iteration superscript on the parameters
and residual terms because these quantities are drawn at itepatarto imputation. Further,

we includethe incomplete variableOs namghe subscripts on the right side of the equation

emphasize that each imputation model requiréquevalues of! {) andu(, .
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Having updated,, FCS perform a second set of Bagian estimation steps, this time
treatingY, as the outcome arl andY; as predictors. As before, the resulting parameter values
and residual termdefinea normal distribution, from which the algorithm draws réw

imputations.

() 7 () 2
Y2ij(mis) ~ Nwzij ! "(Yz))
)

A

YZ(IIJ) = #O(Yz) + #I(Yz)Ylgit) + #Z(Yz)Y;i?l) + uO(Yz) + ul(Yz)Ylfit)
Notice that thalistribution attempts to presertlee random influence of, on', in the analysis
model by incorporating a symmetric random effect forédgressiorof Y, onY;. Although
relatively little work has investigated imputation for random slopes, this specification reflects the
current implementation of multilevel FCS (Gdyih.udke, & Robitzsch, 2016; van Buuren, 2011,
2012; van Buuren et al., 2014

Finally, FCS performs a third Bayesian analysis that tréaas the outcomefter which

it drawsnewY; imputationsfrom the following distribution.

Y(I)

3ij(mis)

- N()%‘;)’ ! g(1/3))
(6)

150 = Hoy + Fy Vi) + #ary Vi) + o,
Because thermlysis model does not posit a random shopeys, the distributionOs mean
incorporates a level residual term foonly theintercept.

Thus far, wehave considered the current incarnation of multilevel RSSlescribed by

(van Buuren, 2011, 20)12nd implemented in the MICE package fonar({ Buuren edl.,
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2014. The FCS framework is very flexible and can accommodate a number of useful extensions
that are noteadilyavailable to researchers. The remainder of the paper outlines three such
modifications that addregsportant practical problems thaise in behavioral researc{a)
incomplete nominal and ordinal variables, (b) analyses that partition relations intc attin
betweercluster relationge.g., contextual effects analyses; multilevel structural equation
models),and (§ incomplete leveP variables. This functionality is implementedhe Blimp
application for Maand Windows.
Bayesian Estimation forOrdinal and Nominal Outcomes

The current application ¢fCS to multilevel data ismited to normally distributed
variables, and publigld studies have yet to extend FCS to incomplete categorical varidbles.
categorical imputation routine that we outline in this manuscript borrows from established
Bayesian estimation procedures for probit regression mQalgissti, 2012; Albert & Chib
1993; Finney & DiStefano, 2013phnson & Albert, 1999), variants of which arglemented
in the joint model imputation framework (Asparouhov & Mutheh, 2010; Carpenter & Kenward,
2013 Carpenter, Goldstein, & Kenward, 2011; Goldstein, Carpeldarward, & Levin, 2002
To provide some necessary background, this section gives a brief overview of the coiaplete
estimation steps for a multilevel probit model. Consistent with FCS for normally distributed
variables, categorical imputation canviewed as a completgata Bayesian analysis with an
additional step that fills in the data, conditional on multilevel model parameters and level
residuals. For now, we focus on an analysis with l&weriables, but the procedure readily
generalizes thigherlevel variables.

To motivate the ensuing discussion, consider a sinapléom interceptnodel with a

single levell predictor andbinary outcomevariable with discrete values of zero and onebR
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regressiorviews discrete responses as arigimogn a normally distributed latent variable, often
denotedY' in the literature.For example, ifY is a clinical depression indicator (e.g., 0 = not

depressed, 1 = clinically depressed), the model defines a correspdhdatgnt variable
representing aormally distributed propensity for clinical depressidrhe resilting model for

the underlying latentariable is as follows.

Y. =B+ B X, +u,+ég,

(7
u,;~N(0,0;) &,~N(0,1)

Conceptually, Equatio(¥) is standard linear multilevel regression model with a ladatdome

variable Howewer, because the latent variable is not observed, the model constrains the within

cluster residual variance to unity to define a scale (f.eis a withinclusterz-score).

The cumulative probit model for ordinal data uses a threshold parameter (oetesdm
to link the latent variable distribution to the discrete responses. In the case of a binary outcome,
a single threshold parametérdivides the latent variable distribution into two regions, such that
discrete values of one and zero correspondtemt scores above and below the threshold,
respectively. The threshold is typically fixed at zero because it is redundant with the regression
intercept, but an equivalent parameterization fixes the intercept to zero and estimates the
threshold. More gesrally, ordered categorical variables whth» 2 response optionk € 1, E,
K) requireK B1 threshold parameters, and the following function relates the discrete and latent

scores.
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N1 if <Y <#
2 if# <Y <#,
|

K if#. <Y <"

K$1

(8)

With K > 2 response categories, the first thresholes often fixed at zero, but the decision to
estimate the intercept instead of this threshold (or visa versa) is arbiffayop panel of
Figure 1 depicts the withioluster latent variable distributions for a binary outcome at three
values ofX, and the bottom panel shows-ad&egory ordinal variable with four threshold
parameters.

Thelatent variable formulation for aagorical variablesffers computational advantages
because it integrates with established Bayesian estimation procedures for normally distributed
outcomes.Specifically, the Gibbs samplbegins by updating the threshold parameters §f
2) and samplingatent scorefor the entire sample, after which it uses identical steps from
Equation(2) to update parameters and leZealesidual termfrom the model in EquatiofY).

More formally,the sampling steps for a single iterattasf the algorithm are

T ~ N(’E VA B(t—l) utn Z(H))

V2O TN(Y* 2 T(t), B(t—l)’ u(t—l)’ ijt—l))
BY ~MVN(BIY, T, Y, u", 50) (9)
u® ~ MVN(u 1Y, @, Y B, ijt—l))

=0~ IW(Z, 1Y, 10, YO B0, u®)
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where TN denotes the truncated normal distribution (explained below), and the remaining terms
are the same as before. Note that the sampling stépefanthincluster residual variance is

absent because this parameter is a consiailished resourceslpert & Chib, 1993; Cowles,

1996; Goldstein et al., 20p@ndthe technical appendix in the supplemental online magirial

a description of the updating step for threshadaislthe remaining distributions are the same as
those for a linear multilevel model.

A brief description of the process that generates latent variable scores provides insight
into categorical imputation, which we describe in the next section. To begin, reconsider the
regression model from Equatién), first assuming that is a binary outcome (e.g., a clinical
depression indicator). The model from Equatignmplies the following latent variable

distribution for each case.

Y;(l) ~ N(ﬁo + ﬁl Xij + Uy, 1) (10)
For clarity, we omit iteation superscripts on the parameters and residual terms, noting that these
guantities carry forward from thgrevious Gibbgycle. Recall that a threshold parameter

divides the latent variable distribution into two regions, such that a discrete score of zero requires

a’Y' value below the threshold, and a score of one requi¥esvalue above the threshold. The
sampling procedure honors this linkage, drawing latemabigr scores that are restricted to the
appropriate region of the normal distribution. More formally, the sampling procedure draws
latent variable scores from a truncated normal distribution (Robert, 1995), denoted by ~TN in
Equation(9). The procedure for ordinal variables wikh> 2 response options is identical but

requires additional threshold parameters. For example, considsatadory variable with
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response optiorls= 1, E, 5. Cases with¥ = 1 must have latent scores between negative infinity
and t,, cases witlY = 2 musthave latent values betweénand!,, and so on.

The multinomialprobit model can accommodate nominal variables Kith 2 categaes
(Aitchison & Bennett, 1970; Albert & Chib, 1993; Goldstein et al., 200%)r example, suppose
thatthe outcome variable & 3 category depression diagnosis (e.g., 1 = clinical depression, 2 =
subclinical depression, 3 = no depressiofe multinonial model defines an underlying normal
variableU' for each of the discrete response options that can be viewed as the latent
propensity of endorsing a particular category (e.g., a normally distributed propensity for each
diagnosis). The latent variablean be expressed more succinctly as a ettt latent
difference scores, each of which contrastsihevalue for a particular category against that of
an arbitrary reference group (e.g., the response with the highest numeric code). For example, the

latent difference scores for a nominal variable Kith 3 response optionk € 1, 2, 3) are

11

where the highest code (e.g., 3 = no depression) is the reference group. In the context of the
depression examplé/l! ande! represent the propensity for clinical and subclinical depression,

respectively, relative to the raepression comparison group.

Theresulting model for the underlying normal latent variables is as follows.
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*
L= . T X+ . T
1 [30<Y1> ﬁl(Yn i T oo gijm)
Y,=8 .+B . X.+u_ .+ . 12
2 'BO<Y2> ﬂl%) i T Hojor) 8z‘j<Y2> (12

u,; ~MVN(0,%Z,) &,~MVN(0,1)

The variable name subscriptsthre coefficients and residual terms indicate that these quantities
can differ across latent variables, such thatay be a stronger predictor ¥f than, (or vise
versa). Specifying the withiacluster covariance matrix as an identity matrix defines¢htes
of the latent variables, as it did in the ordinal model.

Themultinomial probit model does not require threshold parameters. Reditegpry
membership implies a particular rank order and magnitude for the latent vaifédrience
scores.Specifcally, for a nominal variable witK response optionk € 1, E, K), the following

function relates the discrete and latent scores.

1 if Y, =max[Y,,Y,,....,Ys ,JandY, >0

2 if Y, =max[Y,,Y,,..., Y ] andY, >0

Y = g(Y*)z ! (13
K-1 ifY,, =max[Y,.Y;,....Y; JandY, >0

K if max[Y,,Y,,...,Y,,]1<0

Returning to the &ategory depression example, membership in the first category implies that
U, > U] or equivalentlyY, >0andY, >Y, (i.e., the latent propensity for the first category,
clinical depression, igreater than that of both the second and third categories, subclinical and no

depression, respectively). Similarly, membership in the second category impligs thal.,
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or equivalentlyY, >0 andY, >Y, . Finally, membership in the third category (the refiee

group) implies that botly, andY, are less than zero (i.e., the latent propensities of belonging to

the first and second category are less that of the third category).
Because the multinomial model does not employ threshiblesyitial sampling s¢p that

generates thiatent variable scorasses an accejpeject algorithmGoldstein et al., 2009p

repeatedly draw a set 8 valuesfor each case until it obtains values that satisfy the rules from
Equation(13). After sampling latent scorder the entire sample, the algorithm uses the final
three steps of EquatiqA) to update the parameters and lexeesidual terms from the model in
EquationError! Reference source not found. These updating steps are identical to the
corresponding sps for normally distributed variables in Equat{@h The technical appendix
in the supplemental online matergaves additional details.
Categorical Variable Imputation

Consistent with the procedure for normal variables, FCS imputation for categorical
variables is essentially a completata Bayesian analysis with an additional step that fills in the
missing data.Missing values necessitate three changes to the Gibbs sampler from E(f)ation
We summarize these in text, and refer readettset@nline supplemental neaial for additional
details. First, the scond estimation step applies only to the complete cases because the
procedure for drawing latent scores from a truncated normal distribution must condition on an
observed discrete response. Second, esitimation cycle concludes with an additional step that
generates imputations based on the current model parameters aritiresidlial termsAs
illustrated inEquationg7) andError! Reference source not found, the Bayesian estimation

steps are modeling the underlying normal variable, and so imputation is also performed on the

latent varable metric. However, theprocedure for drawingy' imputationsis somewhat
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differentthan that for the complete cadeescause it is no longer possible to condition on a
discrete response. Rather, the imputation step accounts for missing data uncertiiatyirg

latent variablemputes from a normal distribution with no truncation or restrictions otatbat

variableOs rang€&inally, after completing imputation, the algorithm converts the latent variable

imputes to discrete scores by applying Equeg®) to ordinal variables or Equatid¢t3) to

nominal varidles.

To illustrate categorical imputation, consider the following analysis model

(0) — (@] (n) "
Ylij - I 0 + !lYZij + ! 2Y3ij +u0] +

; (14)
whereY; is an incomplete ordinal variable, avidandY, are dummy codes representiny
incompletenominal variablaevith three categoriesWe use (0) and (n) in the superscripts to
remind readers that the variables are ordinal and nominal, respeciivebedn, FCS applies

the Bayesian estimation steps from Equaf@)ntreatingY; as the outcome ang andY; as

predictors. The resulting parameter values and residual terms define a normal distribution that

generate¥; imputations on the latent variable metric, as follows.
() _ " " (t#1) n (t#1)
Ylii N( oY1) * uy )YZiJ' * 2(Y )Y3ii * qu‘(Y{)’ 1) (19

After applying the rules from EquatidB) to create discrete imputes, a second sequence of
Bayesian estimation steps provides parameter values and residual tetinesytoninal

imputation moded
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1) Q)
b N(ﬁ0<Y;>+ﬂ1<Y§‘>KU o) 1)

(16)
#(1) ()
Y NN(:BW;) + B](Y;)YW Tl 1)

The algorithmnext applies the categorization rules from Equati@) to the latenvariable
imputations after which it begins the next roundYgfimputation.

It is important emphasize that categorical imputation is very different from rounding
schemes that have appeared in the literature (Allison, 2002, 2005; Bernaards, Belin, & Schafer,
2007; Yucel, He, & Zaslavsky, 2008), most of which are capabintroducing substantial
biases (Horton, Lipsitz, & Parzen, 2003). For example, theabed nasve rounding approach
imputes discrete variables as though they are normally distributed and subsequently rounds the
fractional imputes to the nearest igge. Unlike these ad hoc methods, the procedure we outline
is grounded in statistical theory (Aitchison & Bennett, 19¥@resti, 2012; Albert & Chib, 1993;
Carpenter & Kenward, 2013; Johnson & Albert, 1988d applies established Bayesian
estimation stes from the literatureAlbert & Chib, 1993; Cowles, 1996; Goldstein et al., 2007).
Further, the latent variabl@proachis an established method for joint model imputation
(Asparouhov & Mutheh, 2010; Carpenter & Kenward, 2013; Muth& Mutheh, 1998P012)
that appears to work well with singlevel data (Wu, Jia, & Enders, 2015) and #4&eel random
intercept models (Enders et al., 2016).

Partitioning Within - and BetweenCluster Variation with FCS

Many multilevel analyses apply models that partitrefations among level variables

into within- and betweertluster components. One common example is the classical contextual

effects analysis from theuttilevel regression literatur@g.ongford, 1989 utlke et al., 2008;
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Lubke, Marsh, Robitzsch, & Trauein, 2011; Raudenbush & Bryk, 2002; Shin & Raudenbush,

2010) An example of this model is

Yy = 1o+t 1Yo + 1Y + 1K +ug+ 7 17

ij

where !  is the pooled withircluster regression of, on'Y,, and! , is the difference between the
within-cluster regression and the betwaduster regression of;j on \72]. (i.e., the contextual

effect) andXis a covariate Raudenbush and Bryk (2002) gaveeaample of a contextual

effects analysis where studdatel socioeconomic status and scha@rage socioeconomic

status (e.g.Y,; and \72]. , respectivelyin the above equatippredict academic achievement, and

published applicationsf this model are comon in the literature (e.g-darker & Tymms, 2004,
Kenny & La Voie, 1985; Ltke, Kdler, Marsh, & Trautwein, 2005; Miller & Murdock, 2007,
Simons, Wills, & Neal, 2015)Multilevel structural equation modelingasecond analysis
frameworkthat models nique within and betweertluster covariance structureds an
example, Martin, Malmberg, and Liem (2010) reported the results from a multilevel factor
analysis where the internal structure of individual and seae®tage academic motivation and
engagemat differed. Other similar applications are common in the substantive literature (Dunn,
Masyn, Jones, Subramanian, & Koenen, 2015; Huang & Cornell, 2015; Md®@1; Reise,
Ventura, Neuchterlein, & Kim, 2005; Toland & De Ayala, 2005).

Although not immediately obvious, tls¢gandardormulation of FCSlescribed in the
previous sectiasis incapable opartitioning relations among levélvariables into withinand

betweercluster componentsecause it placasplicit equalityconstrainton functions of the
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within- and betweertluster covariance matrices (Mistler & Enders, 2016). Analytic work and
computer simulation results show that applying FCS to models such as that in E(uatoam
introduce considerable bias, even under a missing completely at random (MCAR) mechanism
(Carpenter & Kenward, 201&nders et al., 2016; Mistler & Enders, 2016jarpenter and
Kenward (2013, p. 220) outkd a modification to FCS (attributed to a personal communication
from lan White) that addresses this problem by introducing the cluster means -df \@velbles
into the imputation model.

Implementing Carpenter and Kenward@slificationis straightforward.Following each
imputation steptheFCSalgorithmcompute the cluster means from the filled data, and both
the levell variable and itslustermeandunction as predictors in subsequent imputation steps.
To illustrate this modi€ation, reconsider the contextual effects analysis model from Equation
(17), and assume thatis complete and; andY, are incomplete We further assuménat all
variables are normally distributed, but the procedure works the same with categorical variables.
Omitting the supportingamplingsteps that provide the parameter valueslewel-2 residual

terms,FCS draws imputations from the followidgstributions

0 (-1) = (-1) - >
Yty ~ NBoy + Biy Vo + Boiyy Xis + Bar ) Ya; -+ Baoy Xij + o) Ocer)

) ) =) v 2
Yaiitmisy ~ NBowyy + By Yo’ + Baoeyy Xi + Bsooy Vi + Baryy Xij + oy Oiry)

(18)

where?,’™, ¥ and X,; are cluster means

The FCS imputation models froBguation(18) are more general than the analysis model
because thepartition all relations into withinand betweeitluster components, whereas the

analysis model da@eso only fory; andY,. This generality is not detrimental and would be
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important for certain analytic contexts. For example, supposéth#iiree variables were
indicators of a latent factor in a multilevel confirmatory factor analysis. The imputadels
in Equation(18) do not impose constraints on the withemd betveencluster covariance
matricesand thus could accommodate a model that posiif$egieaht factor structure at levél
and level2, different loading magnitudefgctor variancesand so or{e.g.,Martin et al., 201Q)
Analytic work and computer simulations suggest @atpenter and KenwardOs (2013)
modification to FCS&dequatelypreserves the withirand betweertluster covariance matrices
(Carpenter & Kenward, 201&nders et al., 2018Jistler & Enders, 2015 TheBlimp
application incorporates cluster means by default, but usedisalethis option.
FCS Imputation for Incomplete Level-2 Variables

Imputation for incomplete levé variables is straightforward with sonimit not all,
incarnations of joint model imputatigAsparouinov & Muthen, 2010; Carpenter et a2011
Goldstein et al.2009. Briefly, the joint malel is a multivariate approach that usaturated
within- and betweertluster covariance matricés generate imputations (e.g., for an overview,
see Enders et al., 2016). This framework defines all variables as having two levels, and it
constrains to ze all elements of the withinluster covariance matrix that correspond to the
level2 variables. These constraints produlssrel2 imputationsthat are effectively the sum of a
grand mean and atweencluster residual termMethodologists have descrih@an analogous
model specification fomaximum likelihood estimation d#o-level models (Liang & Bentler,
2004).

Despite the ease with which the joint model generates Eeweputations, current
applications of this approach haitde or no capacityfor preservingandom slope variation

because thegssume common withircluster covariance matrix for all clusters (Enders et al.,
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2016Y. In our view, this limitation provides a compelling rationale for building out the FCS
framework, which can readigccommodate random slopes (esge the earlier description and
illustration of FC$. However, thé-CS literature has thus far addressed only incomplete level
variablegivan Buuren, 2011, 201.2andmethods for imputing incomplete lev2lvariables a
notautomaticallyavailable in softwareMethodologists have suggested that |&@hissingness
may be addressed kggregating the data aagplying singldevel imputation to a clustdevel
data set withd records (Gelman & Hill, 2007; Yucel, 2008nd analytic work from Carpenter
and Kenward (2013, pp. 2Z21) provides a formahathematicatationalefor this strategy.

This section outlines evel2 imputationstrategythatapplies the following step$a) use
the procedure from the previous sections to implitevel1 variablesconditioning on the
current level2 imputations (b) aggregatéhe datacreating al-record data set where each row
contains the cluster means and leXeicores for clustgr (c) apply singldevel FCS to the
incomplete leveP variables, and (d) carry the lex2imputes forward to the next round of level
1 imputation. Consistent withevel-1 imputation the level2 procedurean be viewed as a
completedata Bayesian analysis with an additional step that fills in the data, conditional on the
model parameters from a particular iteration. Kégdifference ighat a series of singlevel
regression modeldefine the distributins of missing dataCompletedata Bayesian estimation
for linearregressiomequires sampling steps for the coefficients and residual variance, as

follows.

B” ~MVN(BIY,0.")
0, ~1G(0]1Y,B?) -

2Yucel (2011) outlined a Gibbs sampler for clustpecific covariance matrices, but this
approacthas nobeen evaluatenh the iterature
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The specifiddetails ofeach distributiorare found irthe online supplemental materaidin
published resources (Gelman et al., 2014; Lynch, 28haray et al., 2001; van Buuren, 2012;
van Buuren eal., 2006.

To illustrate level? imputation more concretely, consider the following analysis model

Yo = 1o+ X + 1Yo 1Y, +ug + 7 (20)

J 1]

whereY,; andX are incomplete and complete lexleVariables, respectively, afvdandY; are
incomplete leveR predictors. Furthetemporarilyassume that all variables are normally
distributed. Following Y; imputation, FCS aggregates the letalariables and creates a cluster
level data set where each row contains the {2\wsores and the cluster mean¥odndX. FCS
first applies the Bayesian estimation steps from Equéti®no the filledin data treatingy, as
theoutcome and the remaining variables as predictdrse resulting parameter values define a
normal distribution that generates updatednputations A second sequence of Bayesian
estimation steps provides the parameter¥famputation. The leveR imputation models are as

follows

) (t=1) y () Y 2
Y2j(mis) ~ N(ﬁ()(yz) + ﬁl(Yz)YSj + ﬂZ(YZ)Ylj + ﬁS(YZ)le ’ Gs(yz))

(1) () y () Y 2
Y3j(mis) NN(ﬁom) +ﬁ1(Y3)Y2j +ﬁ2(y3)Y1j +ﬁ3(Y3)X1j’O-£(Y3))

(21

where a predicted value and residual variance again define the center and spread of the

distributions, respectively. As noted previously, analytic work from Carpenter and Kenward
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(2013, pp. 22221) shows that includinaggregated level variables (e.g.Y,’ and X, ) in the

level2 imputation modedis important for preserving the betweeluster covariance structure.

The categorical imputation procedure described earlier in the manuscript readily extends
to level2 variabks. In this situation, the estimation steps from Equ#&@psimplify because the
level-2 residuals and their covariance matrix (ueand! ) are no longer needed for a single
level probit model. Rather, the estimation steps update threshold parameters (ordinal variables
with K > 2 categories), latent scores for the complete cases, and regression coefiitents
which latent variablemputationsare drawn from annrestricted normal distribution. For
example, suppose thdfandY, from the previous analysis model are incomplete ordinal

variables. The imputation steps for these variables are as follows.

! (t) _ n " (t#l) n _(t) " /

Yajimis ~NCooy ¥ "1 Yai -+ "2 Va ¥ a0 %40 D) (22
| (I) _ " " (t) " _(t) " /

Yajmis ~ N o) + "1 Y2) T 20 Ve + " ary %30 )

As before, the variance of the latent variable distributions is fixed at unity for identification, and
the latent imputes are categorized at the end of each step using the current threshold values and
the rules from Equatio(8).
Simulation Study

To investigate the performance of our FCS approach, we designed a Monte Carlo
simulation studywith four betweersubjects factorsmumber of clusterslE 25,50, and200),
within-cluster sample sizen(= 5, 15, 25, and 90intraclass correlation (ICC = .20 and .50), and
the MAR missing data rat®%o, 5%, 15%, and 25%). We generagfiD0replications within

each of thé@6 design cells, resulting ih92000replications.In choosing the levels of each
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factor we considered guidelines from the literature, conditions implemented in published Monte
Carlo studies, and generalizability to typical behavioral science datasetexample, ICC
values of .20 andb0 are representative of cressctional (e.g., students nested in schools) and
repeated measures (e.g., observations nested in subjects) designs, resfegyibebpk et al.,
2011), and these values #ypical of ICCs from published researBulliford, Ukoumunne, &
Chinn, 1999; Hedges & Hedberg, 2007; Murray & Blitstein, 20@inilarly, the level2
sample sizes we implement represent values that researchers might choose after consulting the
methodological literature (e.Kreft and de Leeuw (1998gcommend at lea80 clusters, and
Maas and Hox (2005) suggest tb8tclusters is a common value in educational and
organizational settings)}-or within-cluster sample sizes, Maas and Hox (2GQg)gest that, =
30 is typical of educational research settings,wmadhose, =5 as a lower limit for the within
cluster sample size because smaller values are known to produce imprecise random effect
estimates in some situatio(Glark & Wheaton, 2007; Raudenbu&008) Finally, it is difficult
to determine appropriate missing data rates because authors rarely report this information.
Nevertheless, the rates that we examine here are common in the missing data simulations and are
sufficiently large to expose pracal problems with imputation (e.g., a 25% missing data rate on
every variable in the analysis model is probably uncommon in most applied scenarios).
Population Model and Data Generation

We usedh twolevel regression model with a random slope as tipeiation data

generating modelFor the ICC = .20 condition, érpopulation regression model was

Yi;C) = ﬁo + ﬂl X+ ﬂz Xérllz), + ﬁ3 Xérzli, + ﬂ4 Xg(,)') + ﬂs Xé(l(;') + u0j+M1jX(O) +E&; (23

1ij 1ij
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whereY is a continuous level outcomeX; is a 6category ordinal variable, ang; andX,, are

binary dummy codes representing-aé@egory nominal variablendX; andX, arebinary level

2 covariate. We use alphanumeric superscripts on the variable names to remind readers of the
metrics (i.e., ¢ = continuous, o = ordinal, and n = nominBfxoughout the paper, we have used
XandY to denote complete and incomplete variables, respectively, buteak foom that

convention here and u3eto denote a predictor in the analysis mod&fe chose this model
because it is sufficiently complex to represent published applications of MLMs and because it
incorporates a combination of features thatd#ffecult or impossible to handle with existing
imputation frameworksWe acknowledge that some researchers pnefer to cod¢he 6

categoryX; variableas a set of dummy variables, but we ttb# variableas ordinal in order to
evaluate the imputation ron®; doing so does not inherently violatedel assumptions because
the multilevel analysis does not impose distributional assumptions on predictor variables.
Although not depicted in the analysis model, the simulation also includes a normally distributed
auxiliary variable at each levéd, andA,. As described below, these variables determine
missingness probabilities.

The data generation procdsst created random normal variables and subsequesgig
threshold parameters torm discrete values for the categorical variabl€s.facilitate the
determinatiorof model parameters, we began by specifying withimd betweertluster
covariancamatrices for the underlying normal variahlseown in Table 1 These matricesad
the following properties: (a) predictors measured at the same(kegelX; andX,) had
correlations of .30, (b) auxiliary variables had .40 correlations with other variables measured at
the same levdke.g.,A, andY) but were uncorrelated with variables at tipposite leve(e.g., A,

andX;), and (c) all predictors had a .30 correlation with the outcome varididechose
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correlations of .30 to align with CohenOs (1988) definition of a medium effect size, and we
specified somewhat stronger correlations ferdhxiliary variables to ensure that omittthgse
variables from imputatiowould introduce biagCollins, Schafer, & Kam, 2001)

The following steps produced the underlying normally distributed versions of the

variables. First, we created the leReVariables (i.e A, X5, X,) and the betweealuster

components of the levdl predictors (i.e.le and )?2]. ). Second, we generated thihin-

cluster components of the levelariables (i.e A, X; andX,). These steps first generated
standard normal variables and then used Cholesky decomposition to transfersodhes to the
desired covariance structure from TableThird, wegereratal level 2 residuals agscores and

again used Cholesky decomposition to transform them to the desired covariance structure. We
determined the residual intercept variance by solving for the regress\'_g)mnfthe between

cluster variables. Based same preliminary power simulations, we set the slope variance equal

to 30% of the total leve? variance, and we arbitrarily specified a .30 correlation between the

intercept and slope residuals. Fourtle, computed a vector of predicted scores that tionéid

on the within and betweeitluster predictors and the lev2rresidual terms, and defin&ds the

sum of a predicted score and a witklaoster residual. We again used the appropriate elements

of the covariance matrices in Table 1 to obtain tredfaaents and residual variance for this step.
After generating underlying normal variables, we used the cumulative distribution

function of the normal distribution to determine threshold parametecatiegorizing the

predictor variables Specifically, we chose thresholds that approximately recoded if&p a 6

category ordinal variable with proportions equal to .10, .25, .30, .15, .10, and X0info)

three discrete groups with proportions of .20, .20, anda@d(c) X, andX; into a binary

variables with category proportions o#0 and .6 and 60 and 40, respectively.The choice of
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category proportions is somewhat arbitrary, but we chose the above values to mimic background
variables that would not follow a uniform or symmedistribution (e.g., education level,
ethnicity, etc.).

The final step of data generation imposed MAR missing values on every variable in the
analysis model. Recall that tdata generation process inclugegair of normally distributed
auxiliary variables A, andA,. These variables determined missingness, such that higher scores
onA, (or A, produced higher rates of missing data at ldv@r levet2). We used logistic
regression to relate the auxiliary variables to the missingness probalabtfollows. First, we
used the latent variable formulation for logistic regreséfaresti, 2012; Johnson & Albert,
1999)to define a latent propensity of missingness at {évahd level2. To ensure a relatively
strong selection mechanism, we $&t torrelation between this latent variable and the auxiliary
variables at .40, from which we derived a logistic regression intercept and slope. Substituting the
values ofA, into the equation produced &krow vector of levell missingness probabilitieand
doing the same with, gave al-row vector of leveR probabilities. For each levélvariable,
we created aN-row vector of missing data indicators (0 = observed, 1 = missing) by sampling
from a binomial distribution, such that the success ratedohn observation was equal to its
corresponding missingness probability. We applied the same procedure to #Z\Vaxables,
coding each variable as missing if its cepending indicator equaled one. We used R version
3.2.3 to execute the data geatteon steps, and the syntax is available upon request.

Imputation and Estimation

We usedheBlimp applicationto generat®0imputations for each artificial data set.

After examining the potential scale reduction diagnd&elman & Rubin, 1992yom several

data sets, we specifiedbarn-in period of1000iterations and a thinning interval 8000
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iterations (i.e., starting at th@®Qd" Gibbs cycle we saved a data set evag0d" iteration
thereafter).We then usefull maximum likelihood estimadin in Mplus7 tofit the analysis
modelto each imputed data seind we wrote a custom R progranptml the resultingstimates
and standard errordt is difficult to identify a useful comparison against which to evaluate our
FCS approach because existing methods are unable to produce adequate imputdt®ns for
analysis modeh Equation(23). For example, joint model approaches that use a latent variable
formulation for categorical variables (e.g., the MLwiN anpli¥ programs) cannot preserve
random slope variation and thus would yield biased randfwsote. Although it can
accommodate random slopes, the current implementation of FCS (e.qg., in the R package MICE)
does not accommodate categorical variables. Interested readers canfohedtet al.2016
for a demonstration of these problemSone structural equation modeling programs (e.g.,
Mplus) could apply full informaton maximum likelihood estimation to the analysis model, but
this approacis not a useful benchmark becauseetessarily treats the categorical predictors as
normall distributed random variableginally, listwise deletion is problematic in this
simuldaion becausé requires an MCAR mechanisnThus, we restrict our attention to FCS

We examined two outcomes, relative bias and confidence interval covésgeted
previously, we used standard matrix expressions to derive regression parametersr&ingen
the underlying normal variables. However, these parameters are no longer applieable aft
categorizing the predictors. Becauses difficult or impossible to analytadly derive true values
for a model with discrete explanatory variables,ingteadused the estimates from a complete
data set with a million cases (10,000 clusters with 100 cases each) to define the truelhaues.

population parameters for the ICC = .20 and .50 conditions are given below.
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Y =5006+.191( X )+ 219( X5 )+ 496( X5, )+ .198( X))+ 207(X(0) o +u, X + &,
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We defined relative bias as the difference between an average estimate and the true value divided
by the true value (i.e., bias as apodion of the true value)Authors regularly suggest that
relative bias values less tha®in absolute valuare acceptabl@=inch, West, & MacKinnon,
1997; Kaplan, 1988)Finally, we used the pooled standard errors to construct 95% confidence
intervds for each estimate and computed confidence interval coverage as the proportion of
replications where the norm#deory intervali.e., the estimate plus or minus 1.96 standard error
units) contained the true (completiata) parameter value. With an agdbvel of .05, an
accurate imputation routine shoydcbduce coverage rates of .95. Valbebw the nominal rate
indicate Type | error inflation (e.g., a coverage value of 90% suggests a twofold increase in Type
| errors), whereas values exceeding &ffect conservative inferenc&Vhen estimates are
unbiased, confidence interval coverage unambiguously reflectgitigy of the estimated
standard errordut biased estimates will distort coverage, even when standard errors are
accurate.
Results

Figures Zhrough 4give trellis plots of relative biasy the number of leve? units,with

dashed linedlenoting thet 0.10bias thresholds that authors routinely apply in simulation studies

(Finch et al., 1997; Kaplan, 1988For readers who want togpect the numeric estimates and
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bias values in more detail, Appendix Tables 1 through 6 in the supplemental online material give
the average parameter estimates and relative bias values for all combinations of coiitions.
almost no exceptionseglative bias valuefor the fixed effects estimates féklow + 0.10, and
the design factors hagkry little impact on parameter recoveryhere was a slight tendency for
accuracy to improve when the withifuster sample siagasn, = 15 or largerasrelative bias
values wergyenerallynearzeroin thesesituations

Turning to variance estimates, the sample sizes and missing data rate infthenced
betweercluster covariance matrestimates Figures 2 through 4 highlight a number of trends.
First, the intercepslope covariance exhibited the largest bias values, followed by the slope and
intercept variance, respectivelyhe covariance bids likely an artifact of dividing by a
population value that is relatively close to zerowsoare hesitarto emphasize this findingr'he
intercept variance estimates generally exhibited tolerable biases, and this parameter was largely
unaffected by the missing data rate. Slope variance estimates were typically too low, with bias
valuesreach orexceedingl0%at missing data rates of 15% or high&econdbias decreased as
thewithin-cluster sample size increased, presumably because the reliability of th2 level
residuals improvedThird, increasing the number of clusters fromt@%50influencedthe
edimates, but further increasing the number of clusters to 200ittadlly noimpact.
Comparing Figures 2 and 3, we see that random effect biases were geameality with 25
clustersthan with 50 clustersAlthough thisrend may seeroounterintuitive, the difference is
attributable to the prior distribution, the influence of which depends on the number of clusters.
Specifically,when the number of clusters was smile invese Wishart prior distribution
counteracted negative bias by shifting theessof the marginal posterior distributions to a higher

positivevalue. Judging from the similarity of Figures 3 and 4, the influence of the prior
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effectively vanishedavith 50 or more clustersAs noted inthe online supplemental appendour
choiceof prior distributions was informed by the literature and extensive simulation work.
Nevertheless, we caution against overgeneralizing these results, as the influence of the prior may
depend features of the data or the analysis madehriety of resourcediscuss the influence of

prior distributions with small samples.g., Depaoili, 2014; McNeish, 2016; McNeish &

Stapleton, 201%).

Figures 5 through 7 give trellis plots of confidence interval covelagéee fixed effects
slopesby the number of leve? units,with dashed lines at .925 and .975 denoting theatled
liberal criterion fromBradley (1978) We do not considecoverage forwariance estimates
because the literature suggests that symmatrniidenceantervals for these parameters are
inappropriatde.g., Maas & Hox, 2005; Snijders & Bosker, 2Q1)d we also omit the intercept
because this parameter is typically not central to substantive hypdthése®en in Figures 6
and 7, when the number disters was 50 or higher, coverage valuesliglopecoefficients
generally fell within BradleyOs lita¢ criterion. However, ith 25 clusters, the levdl predictors
had adequate coverage, but the values for-2yekdictors were generally too lowith most
values ranging between .88 and .9Zfmpletedata estimate®including those from our study
Pexhibit the same pattern (McNeish & Stapleton, 28)1%tegmueller, 2013), so it does not
appear thaimputation exacerbageoverage problems.

Software Implementation
The FCS imputation routine that we propose in this manuscript is availdblienip, an

application for thevlac and Windows operating systemResearchers can work from a simple

® The intercept coefficient generally suffered from low coverage, with most values ranging
between .90 and .925; this finding was independent of the missing data rate, with the eomplete
data estimates exhibiting the same pattern.
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command language or from a graphical interfateillustrate the progranwe considethe

Blimp syntax for the analysis model in Equat(@3). The syntax and the corresponding data
file are available avww.appliedmissingdata.com/multileviehputation.htm| as are a number of
supporting documents and tutorials.

TheBlimp syntax consists of a relatively small number of commands (slhowaps,
although the program is not case sensitive), each of which ends in a colon. Commands are
followed by one or more options or specifications, with a semicolon terminating each list.
Briefly, the DATA command gives the file path to the raw ASdzta file, the VARNAMES
command lists the order of the variables in the data file, and MISSING specifies a common
missing value code for all incomplete variabldfie MODEL command specifies a lexz|
identifier variable (the variable to the left of thidé), the variables in the imputation model (the
list to the right of the tilde), and any random associations between pairs ef leaghbleqtwo
or more variables joined by a coloryariables listed on the MODEL command are
automatically defined asontinuous (normal) unlesise user lists the variables on the ORDINAL
or NOMINAL lines. The MODEL command automatically introduces random interceptlfor
level1 variables, and random slopes are specified by joimwogr moreevel1 variables with
a colon (e.g.Qyx10 specifies a random slpp&IMPS gives the desired number of imputations,
BURN and THIN are algorithmic options that determine the {ouiand thinning (i.e., between
imputation) intervals, respectively, and SERDvides a randomumber seedIn our example,
NIMPS =20request0 data imputed setand theBURN =1000and THIN =10000ptions
instruct the program to save the fidstta set after theDD3" computational cycland subsequent
data sets everyoDJ" cycle thereafter Finally, the OUTFILE command gives the file path for

the text file(s) containing the imputations, and@®TIONS command specifies a number of
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miscellaneous computational and output preferences. In our examplgtitn@keyword
specifies the prioridtribution for variance and covariancarametergseethe technical
appendix from the online supplemental matgri@ho® invokefiomogeneouwithin-cluster
residual variancesOseparateO saves imputed data sets to separate text files (e.g., for analys
with Mplusg), OpsrO requests a table of potential scale reduction {@xbrsn & Rubin, 1992)
and Oclmeariftroducescluster means in the imputatiorodel, as in Equatio(i8). As noted
previously, all facets of imputation can also be specified using a graphical interface that bypasses
the need for syntax.

Blimp is written in C++ and is provided as an optimized coetpédxecutable for Mac
and Windows operating systems. This architecture makes the program substantially faster than
an R package, for example. To provide some rough benchmarkgnerated 50 imputations
for two data sets from the simutat study With 25% missing data on every variable, a 2014
iMac took approximately 22 secondsdomplete imputation withN = 125 observations (25
clusters and 5 observations per cluster), and it took roughly 7 minutes to complete imputation
with N = 10,000 observation(200 clusters with 50 cases per cluster). These runtimes put Blimp
on par with commercial packages such gaud

Discussion

Multiple imputation is an MARbased approach that has enjoyed widespread use in a
variety of disciplines. The joint model and FCS are the predominant imputation frameworks for
singlelevel data, and both have multilevel extensions. The multilevel impuoidgerature is
still relatively nascent, and existing imputation routinesdarerse and offer different
functionality; all approaches can readily accommodate basic random intercept analyses with

normally distributed variables, but they differ in thalnility to handle random slopes,
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categorical variableglifferent within and betweeistluster covariance matricesmd incomplete
level 2 variablegEnders et al., 2036 This paper outlined an FCS imputation approach that can
accommodate these commamalysis features. Our simulation results suggest that FCS gives
good performance across a variety of conditions that areatypi behavioral science dati
virtually conditions that we examined, regression coefficients were relatively free ohg@as,

in small samplewith a large proportion of missing data. Random effect estimates were
somewhat mixedhowever Intercept variance estimates were generally accurate and were
unaffected by the missing data rate. Slope variance estimates, on theaothevereftentoo

low. A 15% missing data rate appeared to be a tipping point where slope variance estimates
beganto exhibit biases exceeding 10%, particularly when the withister sample size was
small.

Our work developing and testing FCS imgticin allows us to offer a number of practical
recommendations for researchers. In the context of sieg imputation, the literature often
suggests that a single set of wadinceived imputations can serve as input data for a wide variety
of statistcal analyses. Given the complexities of multilevel data, we recommend that researchers
limit their focus to a single analysis or a small family of analyses when generating imputations.
Employing parsimonious imputation models mitigates computationalgmnsithat can arise
with large numbers of random effe¢&chafer, 2001)and it avoids an excessive number of
level2 variables (leveR imputation requires fewer variables than clusters). Related to model
complexity, we recommend that researchers perfaeliminary analyses to determine which
variables in a particular analysis family require random slopékough our procedure can
accommodate more than oradom slope predictowe expect th&ibbs samplealgorithm to

experience computational prebhs if the number of random associations is too IgBghafer,
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2001) To simplify imputation, researchers could first estimate models with listwise deletion,
retaining random slopes that are reach some liberal significance criteriop .8Q); becase
these tests are exploratory, approximate probability values from standara-i&siisl can be
used for this purpose, or researchers can use more appropriate {inagadechisquare tests
(Molenberghs & Verbeke, 2004; Savalei & Kolenikov, 200Bally, we strongly encourage
researchers to examine convergence diagnostics prior to creating a set of imputations for
analysis. In our experience, even relatively simple models can require very lorig pariods
(e.g., several hundred, perhaps 1060@nore iterations) in order for the MCMC algorithm to
achieve stationarity. Currently, our software implements Asparouhov ane\g2010)
modification of theGelman and Rubin (199pptential scale reduction factor, and we
recommend that researchessamine PSR values frotwo or more longhairs (e.g., 2000 or
more iterations) prior to generating imputed data sets.

Although our preliminangimulationresults are promising, a great deal of
methodological work remaing=irst, interaction effectareoften of interesin multilevel
research, and our program currently requires users to treat product terms like any other
incomplete variable (von Hippel, 2009). A growing body of methodological research has
demonstrated that interactive effects are probkc for MAR-based missing data handling
methods (Carpenter & Kenward, 2013; Enders, Baraldi, & Cham, 2014; Seaman, Bartlett, &
White, 2012; Yuan & Savalei, 2014), and imputing product terms generally requires an MCAR
mechanim (Carpenter & Kenward, 2013Methodologists have recentiieveloped-CSbased
imputation routines that work well with interactive effects (Bartlett, Seaman, White, &
Carpenter2015, and we hope to extend these procedures to the multilevel context in the future.

Second, we limité our simulations ta normally distributedbutcomeand nornally distributed
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random effects. Violating either of these assumptions is potergralbtematic for multiple
imputation(Yuan, YangWallentin & Bentler 2012; Yucel & Demirtas, 2010)lonnormaldata

are probably the normm many behavioral research settings, so it is important for future studies
to evaluatd=CS with nonnormal continuous variables. The impact of nonnormality could be
most pronounced on lev&limputation where the sample sizeésy small (Yuan et al., 2012).
Third, all simulation studies necessarily lack generalizability, and ours is no differeve, as
chose to investigate a rather limited set of conditions and parameter atuesxample, we

limited our focus to medium f&fct sizes in the context of a tradited multilevel regression

model, and we restricted our attention to categorical predictors bebaugerature has largely
focused on continuous variables. In developing our imputation routine, we performedusimero
simulation studies with different models (e.g., random intercepts, random slopes) and different
configurations of variables (e.g., all continuous, mixtures of categorical and continuous). The
results from these test simulations were largely consigtiémthose reported herand

summaries are available upon request. One diffefeocethe simulations hetis that

regression coefficients for continuous le2gdredictors tend to exhibit mild biases when the
number of clusters is small and the peragetof missing data is large (e.d)5 25 with 25%

missing data can produce bias values e1%%). Thisbiasis consistent with published studies

on singlelevel imputatiorwith small sample sizg¥uan et al., 2012). Neverthelefsture

studies shod examine different analysis models (e.g., multilevel structural equation models),
different data structures (e.g., dyadic data structures), different configurations of random effects
(e.g., more than one random slope, smaller or larger intraclass con®laand different effect

sizes, to name a few.
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In sum, multiple imputation has a long history in the methodological literature, but its
extension to multilevel data is more recent. Given the limitations associated with existing
imputation routines, ougoal was to develop and test an imputation procedure that can
accommodata wide range of complexities that are typical of behavioral science data. Our
computer simulations suggest that the FCS approach has good performance across many

scenarios, but argat deal of methodological work is needed to advance this important topic.
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Table 1
Within- and BetweeiCluster Covariance Matrices for Data Generatio
A, A, Y X, X, X, X,
ICC =.20
A 0 0 0 0 0 0 0
A, 0 1.0C 0 0 0 0.4C 0.4C
Y 0.40 0 0.2t 0.08 0.08 0.15 0.15
X, 0.40 0 0.3C 0.25 0.08 0 0
X, 0.40 0 0.3C 0.3C 0.25 0 0
X, 0 0 0 0 0 1.0C 0.3C
X, 0 0 0 0 0 0 1.0C
ICC =.50
A 0 0 0 0 0 0 0
A, 0 1.0C 0 0 0 0.4C 0.4C
Y 0.40 0 1.0C 0.3C 0.3C 0.3C 0.3C
X, 0.40 0 0.3C 1.0C 0.3C 0 0
X, 0.40 0 0.3C 0.3C 1.0C 0 0
X, 0 0 0 0 0 1.0C 0.3C
X, 0 0 0 0 0 0 1.0C

Note The diagonatlisplaysthe betweertluster variances. The within
cluster variances of all levdl variables equal 1, and these quantities
zero for level2 variables. The lowetiagonal gives the average withir
cluster covariances, and the upper diagonal elements inyipeithte
give the betweewluster variances covariances. Because the ICC =
condition has withinand betweertluster variances set to 1.00, all-off
diagonal elements can be viewed as correlations.
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Figure 1 LatentY' distributions for a categoric¥variable at three values ¥f The dashed
line represents the withicluster regression (i.el,;; =/, +u,, and/,; =/, +u,;), and the
horizontal line(s) denotes thigresholds). The top panel depicts a binafyariable where a
discrete sore ofY = 1 occurs when the measurement process yiellsvalue above the
threshold! , and a discrete score ¥E 0 occurs whery' falls below the threshold. The bottom
panel depicts a fiveategory ordinal variable with four threshold parameters.
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Figure 2 Average relative bias values for design cells Wwith25 clusters. Relative bias is
defined as the difference between an average estimate and the true value expressed as a
proportion of the true value. The dashed lines represent bias vatt €s16f.

O Missing=0% A Missing = 5%

. R
Missing Data Rate —+ Missing = 15% X Missing = 25%

ICC =20

ICC = 50

Intercept -

X1 Slope -

X2 Slope -

X3 Slope -

X4 Slope =

X5 Slope -

Intercept Var. -

Covariance -
Slope Var. - ¥

Residual Var. =

Intercept -

X1 Slope -
X2 Slope -

X3 Slope -

X4 Slope -

X5 Slope -
Intercept Var. =
Covariance -
Slope Var. -

Residual Var. -

Intercept -

X1 Slope -
X2 Slope -
X3 Slope =
X4 Slope -

X5 Slope -
Intercept Var. =
Covariance -
Slope Var. =
Residual Var. -

1
-0.50

&

_|.

X
i
A%
Ox+

1 1
050 -0.50
Relative Bias

|

x| @
- ek
e

el

&
X4 |
INES

ax

1snp) 1od u
GZ = s1Isn[)

S=

Gl =Iosny) Jod u

0S = J9sn[D 1od u

GZ = s1Isn))

GZ = s1Isn[)



MULTILEVEL IMPUTATION 54

Figure 3 Average relative bias values for design cells Witb0 clusters. Relative bias is
defined as the difference between an average estimate and the true value expressed as a
proportion of the true value. The dashed lines represent bias vatt €s16r.
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Figure 4 Average relative bias values for desagils withj = 200 clusters Relative bias is
defined as the difference between an average estimate and the true value expressed as a
proportion of the true value. The dashed lirggesent bias values 610.10.
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Figure5. 95% confidence interval coverage for design cells Wwitl25 clusters. The solid line
at .95 represents the nominal value, and the dashed lir8&5aind .975 represent BradleyOs

(1978) liberal criterion.
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Figure 6. 95% confidence interval covgafor design cells with = 50 clusters. The solid line
at .95 represents the nominal value, and the dashed lir8&5aind .975 represent BradleyOs

(1978) liberal criterion.
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Figure 7. 95% confidence interval coverage for design cells witl200 dusters. The solid

line at .95 represents the nominal value, and the dashed li8@&atnd .975 represent BradleyOs

(1978) liberal criterion.
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AppendixTablel

Online Supplemental Material

Average Estimates from Simulation Study (ICC = .20, Numb€tusters = 25)

True Missing Data Rate per Variable
Parameter Value 0% 5% 15% 25% 0% 5% 15% 25%
Cluster Size =5 Cluster Size = 15
Intercept 5.00€ 5.00¢ 5.00z 5.00z 5.004 5.00z 5.00z 5.00z 5.004
X, Slope 0.191 0.18¢ 0.18¢ 0.191 0.181 0.18¢ 0.18¢ 0.191 0.181
X, Slope 0.21¢ 0.228 0.22€ 0.21€ 0.23¢ 0.22t 0.22€¢ 0.21€ 0.23¢
X; Slope 0.49€ 0.514 0.51Z 0.49z 0.50¢ 0.514 0.51: 0.49z 0.50¢
X, Slope 0.19¢ 0.211 0.21C 0.204 0.18¢ 0.211 0.21C 0.204 0.18¢
Xs Slope 0.207 0.204 0.20€ 0.20z 0.19t 0.204 0.20€ 0.20z 0.19t
Intercept Var. 0.19¢ 0.15z 0.15€ 0.16t 0.17€¢ 0.15z 0.15€ 0.165 0.17¢
Covariance 0.03C 0.021 0.021 0.024 0.02z 0.021 0.021 0.024 0.02zZ
Slope Var. 0.034 0.037 0.041 0.05z 0.061 0.037 0.041 0.05% 0.061
Residual Var. 0.891 0.85€ 0.85z 0.84¢ 0.84¢ 0.85€ 0.85z 0.84¢ 0.84¢
Cluster Size = 25 Cluster Size = 50
Intercept 5.00€ 5.00¢ 5.00z 5.00z 5.004 5.00z 5.00z 5.00z 5.004
X, Slope 0.191 0.18¢ 0.18¢ 0.191 0.181 0.18¢ 0.18¢ 0.191 0.181
X, Slope 0.21¢ 0.228 0.22€ 0.21€ 0.23¢ 0.22t 0.22€¢ 0.21€ 0.23¢
X3 Slope 0.49€ 0.514 0.51Z 0.49z 0.50¢ 0.514 0.51: 0.49z 0.50¢
X, Slope 0.19¢ 0.211 0.21C 0.204 0.18¢ 0.211 0.21C 0.204 0.18¢
xs Slope 0.207 0.204 0.20€ 0.20z 0.19t 0.204 0.20€ 0.20z 0.19t
Intercept Var. 0.19¢ 0.15z 0.15€ 0.16t 0.17€¢ 0.15z 0.15€ 0.165 0.17¢
Covariance 0.03C 0.021 0.021 0.024 0.02z 0.021 0.021 0.024 0.02zZ
Slope Var. 0.034 0.037 0.041 0.05z 0.061 0.037 0.041 0.05% 0.061
Residual Var. 0.891 0.85€ 0.85z 0.84¢ 0.84¢ 0.85€ 0.85z 0.84¢ 0.84¢




MULTILEVEL IMPUTATION

Appendix Table 2

Average Estimates from Simulation Study (ICC = .20, Number of Clusters = 5(

True Missing Data Rate per Variable
Parameter Value 0% 5% 15% 25% 0% 5% 15% 25%
Cluster Size =5 Cluster Size = 15
Intercept 5.00€ 5.00: 5.00z 5.00z 5.004 5.01C 5.01C 5.00z 4.99¢
X, Slope 0.191 0.18¢ 0.18¢ 0.191 0.181 0.18¢ 0.18¢ 0.18¢ 0.18t
X, Slope 0.21¢ 0.22F 0.22€ 0.21€ 0.23¢ 0.21¢€ 0.22C 0.23z 0.22¢€
X; Slope 0.49€ 0.514 0.51% 0.49z 0.50¢ 0.507 0.50€ 0.501 0.49t
X, Slope 0.19¢ 0.211 0.21C 0.204 0.18¢ 0.201 0.204 0.21: 0.19¢
Xs Slope 0.207 0.204 0.20€ 0.20z 0.19t 0.20c 0.20z 0.19€¢ 0.17¢
Intercept Var. 0.19¢ 0.15Zz 0.15€ 0.16t5 0.17€¢ 0.162 0.16zZ 0.164 0.17C
Covariance 0.03C 0.021 0.021 0.024 0.02z 0.02¢€ 0.02t 0.02z 0.02zZ
Slope Var. 0.034 0.037 0.041 0.05Z 0.061 0.031 0.03z 0.03z 0.034
Residual Var. 0.891 0.85€ 0.85z 0.84¢ 0.84¢ 0.88c 0.88z 0.88¢ 0.89:
Cluster Size = 25 Cluster Size = 50
Intercept 5.00€ 5.00C 4.99¢ 4.99¢ 5.00€ 5.004 5.00z 5.00¢ 5.00:
X, Slope 0.191 0.18¢ 0.18¢ 0.18¢ 0.18¢ 0.187 0.18¢ 0.18¢ 0.18€
X, Slope 0.21¢ 0.217 0.21¢€ 0.221 0.221 0.217 0.21¢ 0.221 0.22:
X; Slope 0.49€ 0.50% 0.50z 0.49¢ 0.49z 0.49¢ 0.49¢ 0.49€¢ 0.48¢
X, Slope 0.19¢ 0.204 0.20t 0.19¢ 0.19t 0.20¢ 0.204 0.197 0.19t
Xs Slope 0.207 0.204 0.201 0.21z 0.191 0.19¢ 0.19¢ 0.20C 0.19t
Intercept Var. 0.19¢ 0.16¢ 0.16¢ 0.16€ 0.16t 0.174 0.17: 0.16¢ 0.17C
Covariance 0.03C 0.027 0.02¢€ 0.02z 0.021 0.027 0.02¢ 0.024 0.02zZ
Slope Var. 0.034 0.031 0.031 0.03C 0.03C 0.031 0.031 0.03C 0.02¢
Residual Var. 0.891 0.89C 0.89C 0.891 0.89¢ 0.891 0.891 0.894 0.89¢
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Appendix Table 3

Average Estimates from Simulation Study (ICC = .20, Number of Clusters = 2(

True Missing Data Rate per Variable
Parameter Value 0% 5% 15% 25% 0% 5% 15% 25%
Cluster Size =5 Cluster Size = 15
Intercept 5.00€ 5.00z 5.00z 4.99¢ 5.001 5.00z 5.001 4.997 5.00C
X, Slope 0.191 0.18¢ 0.18¢ 0.18t 0.18z 0.18¢ 0.187 0.18¢ 0.184
X, Slope 0.21¢ 0.22F 0.23C 0.23% 0.224 0.221 0.22¢ 0.22z 0.227
X; Slope 0.49€ 0.51¢ 0.521 0.51¢ 0.50C 0.50€ 0.507 0.50z 0.49¢
X, Slope 0.19¢ 0.204 0.20t 0.201 0.19¢ 0.204 0.204 0.20C 0.19¢
Xs Slope 0.207 0.20¢ 0.20c 0.20t 0.18¢ 0.20C 0.20C 0.20€ 0.197
Intercept Var. 0.19¢ 0.17¢ 0.174 0.17¢ 0.17¢ 0.181 0.181 0.181 0.181
Covariance 0.03C 0.024 0.02z 0.021 0.01¢ 0.027 0.02¢ 0.02z 0.02C
Slope Var. 0.034 0.034 0.03¢ 0.04C 0.04z 0.031 0.031 0.03C 0.02¢
Residual Var. 0.891 0.877 0.87€¢ 0.877 0.87¢ 0.89C 0.891 0.89z 0.90C
Cluster Size = 25 Cluster Size = 50
Intercept 5.00€ 5.00€ 5.00t 5.00z 5.00z 5.005 5.00z 5.001 4.99¢
X, Slope 0.191 0.18¢ 0.18¢ 0.187 0.18¢ 0.18¢ 0.187 0.18¢ 0.18t
X, Slope 0.21¢ 0.22¢ 0.22t 0.22t 0.22¢€ 0.22C 0.22z 0.22z 0.22:
X; Slope 0.49€ 0.504 0.50Z 0.49¢ 0.49t 0.50z 0.50C 0.497 0.48¢
X, Slope 0.19¢ 0.20¢ 0.20t 0.201 0.18¢ 0.20€ 0.20t 0.204 0.19:
Xs Slope 0.207 0.204 0.204 0.201 0.197 0.201 0.201 0.20z 0.191
Intercept Var. 0.19¢ 0.18: 0.18: 0.181 0.17¢ 0.185 0.184 0.181 0.17¢
Covariance 0.03C 0.027 0.02¢€ 0.024 0.02C 0.027 0.02¢ 0.024 0.021
Slope Var. 0.034 0.03z 0.03z 0.03C 0.02¢ 0.03z 0.03z 0.031 0.02¢
Residual Var. 0.891 0.891 0.89z 0.89t 0.89¢ 0.89C 0.891 0.89t 0.89¢
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Appendix Table 4

Average Estimatesom Simulation Study (ICC = .50, Number of Clusters = 25)

True Missing Data Rate per Variable
Parameter Value 0% 5% 15% 25% 0% 5% 15% 25%
Cluster Size =5 Cluster Size = 15
Intercept 5.02¢€ 5.00¢ 5.00z 5.00¢ 5.001 5.00: 5.00z 5.001 5.001
X, Slope 0.23¢ 0.18¢ 0.18¢ 0.18¢ 0.18¢ 0.187 0.187 0.18¢ 0.187
X, Slope 0.25C 0.22F 0.22¢ 0.23t 0.228 0.221 0.224 0.224 0.22¢
X; Slope 0.55¢ 0.51t 0.51€ 0.51¢ 0.50€ 0.50€ 0.507 0.50z 0.49¢
X, Slope 0.40z 0.20C 0.20C 0.20Z 0.197 0.20c 0.20z 0.20C 0.19¢
Xs Slope 0.404 0.20€ 0.20t 0.19¢ 0.18¢ 0.204 0.20z 0.201 0.187
Intercept Var. 0.80C 0.18¢ 0.19C 0.19C 0.19C 0.191 0.191 0.19C 0.19zZ
Covariance 0.11¢ 0.02¢ 0.024 0.021 0.01€ 0.027 0.02t 0.02z 0.01¢
Slope Var. 0.12¢ 0.03: 0.03z 0.031 0.02¢ 0.03z 0.03z 0.03C 0.027
Residual Var. 0.914 0.88¢ 0.88¢ 0.89C 0.89¢ 0.89z 0.89: 0.89€¢ 0.90z
Cluster Size = 25 Cluster Size = 50
Intercept 5.02¢€ 5.00t 5.004 5.00z 5.004 5.00€ 5.00t 5.004 5.00:
X, Slope 0.23¢ 0.18¢ 0.18¢ 0.187 0.18¢ 0.18¢ 0.187 0.18¢ 0.18t
X, Slope 0.25C 0.21¢ 0.22z 0.22z 0.228 0.21€ 0.221 0.22z 0.22:
X; Slope 0.55 0.50% 0.50Z 0.49¢ 0.494 0.50C 0.49¢ 0.49€¢ 0.49C
X, Slope 0.40z 0.20¢ 0.20¢ 0.20C 0.19t 0.20t 0.20t 0.201 0.19:
Xs Slope 0.404 0.204 0.20¢ 0.19¢ 0.197 0.20t 0.20z 0.197 0.19t
Intercept Var. 0.80C 0.192 0.19z 0.19z 0.19z 0.192 0.19z 0.19z 0.191
Covariance 0.11¢ 0.02¢ 0.02¢€ 0.024 0.021 0.02¢ 0.027 0.02t 0.02zZ
Slope Var. 0.12¢ 0.03: 0.03z 0.03C 0.027 0.03: 0.03z 0.031 0.02¢t
Residual Var. 0.914 0.89z 0.89% 0.89€ 0.901 0.891 0.89z 0.89¢ 0.901
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Appendix Table 5

Average Estimates from Simulation Study (ICC = .50, Number of Clusters = 5(

True Missing Data Rate per Variable
Parameter Value 0% 5% 15% 25% 0% 5% 15% 25%
Cluster Size =5 Cluster Size = 15
Intercept 5.02¢€ 5.01f 5.01t 5.001 5.01: 5.021 5.01¢ 5.014 5.01C
X, Slope 0.23¢ 0.237 0.23t 0.23% 0.23t 0.23t 0.234 0.23z 0.23Z
X, Slope 0.25C 0.274 0.27€ 0.27t 0.23t¢ 0.25t5 0.25€¢ 0.25C 0.244
X; Slope 0.55 0.59C 0.591 0.60€ 0.567 0.57C 0.567 0.54¢ 0.54:
X, Slope 0.40z 0.391 0.39C 0.39t 0.384 0.42€ 0.424 0.397 0.391
Xs Slope 0.404 0.39€ 0.39€ 0.39¢ 0.37¢ 0.40¢ 0.407 0.38¢ 0.39¢
Intercept Var. 0.80C 0.66¢ 0.664 0.67t 0.67¢ 0.70: 0.70z 0.71z 0.69z
Covariance 0.11¢ 0.09¢ 0.094 0.09C 0.08z 0.101 0.09¢ 0.09¢ 0.08t
Slope Var. 0.12¢ 0.11€ 0.12z 0.13€ 0.13¢ 0.11¢ 0.11¢ 0.114 0.10€
Residual Var. 0.914 0.89t 0.89€ 0.901 0.917 0.91C 0.91z 0.917 0.93C
Cluster Size = 25 Cluster Size = 50
Intercept 5.02¢€ 5.01€ 5.01t 5.00¢ 5.01z 5.017 5.01t 5.01z 5.01F
X, Slope 0.23¢ 0.23¢ 0.237 0.234 0.231 0.23¢ 0.23¢ 0.23z 0.23c
X, Slope 0.25C 0.25C 0.25z 0.251 0.23¢ 0.251 0.25z 0.25% 0.24¢€
X; Slope 0.55 0.554 0.55Z 0.551 0.53¢ 0.55€ 0.55: 0.54€ 0.534
X, Slope 0.40z 0.39¢ 0.40z 0.39¢ 0.39c 0.40€ 0.407 0.401 0.38C
Xs Slope 0.404 0.40¢ 0.40€ 0.401 0.40C 0.41C 0.40€ 0.40C 0.39z
Intercept Var. 0.80C 0.714 0.71C 0.717 0.69¢ 0.71€ 0.714 0.71z 0.69¢€
Covariance 0.11¢ 0.107 0.104 0.09¢ 0.08t 0.11: 0.11C 0.10z 0.09¢€
Slope Var. 0.12¢ 0.12C 0.11¢ 0.11:Z 0.10¢ 0.12z 0.12C 0.11€ 0.10¢
Residual Var. 0.914 0.91C 0.91z 0.92C 0.92¢ 0.911 0.91: 0.921 0.93C
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Appendix Table 6

Average Estimates from Simulation Study (ICC = .50, Numb€usters = 200)

True Missing Data Rate per Variable
Parameter Value 0% 5% 15% 25% 0% 5% 15% 25%
Cluster Size =5 Cluster Size = 15
Intercept 5.02¢€ 5.011 5.01C 5.00t 5.00z 5.01t 5.01: 5.014 5.007
X, Slope 0.23¢ 0.23¢ 0.23¢ 0.23t 0.23t 0.23¢€ 0.237 0.234 0.23Z
X, Slope 0.25C 0.26C 0.26C 0.26t5 0.26z 0.254 0.254 0.25z 0.25Z
X; Slope 0.55 0.587 0.587 0.587 0.577 0.56t5 0.56z 0.55€ 0.54¢
X, Slope 0.40z 0.40¢ 0.401 0.39¢ 0.387 0.41C 0.40¢ 0.39: 0.38t
Xs Slope 0.404 0.41C 0.40€ 0.39€ 0.39: 0.40€ 0.40:z 0.39¢ 0.384
Intercept Var. 0.80C 0.785 0.78¢ 0.78¢ 0.79t 0.78¢ 0.78¢ 0.79z 0.79t
Covariance 0.11¢ 0.10¢ 0.09¢ 0.08¢ 0.071 0.11C 0.10t 0.09t 0.084
Slope Var. 0.12¢ 0.121 0.11¢ 0.10¢ 0.097 0.124 0.121 0.11: 0.101
Residual Var. 0.914 0.91Zz 0.91f 0.92t 0.93¢ 0.914 0.91€ 0.924 0.93¢
Cluster Size = 25 Cluster Size = 50
Intercept 5.02¢€ 5.01¢ 5.01¢ 5.01:Z 5.01C 5.02z 5.02C 5.01t 5.01:
X, Slope 0.23¢ 0.237 0.23€ 0.23¢ 0.23z 0.23¢ 0.23¢ 0.23z 0.23Z
X, Slope 0.25C 0.25Zz 0.252 0.25z 0.24€ 0.25C 0.251 0.25C 0.247
X3 Slope 0.55 0.55¢ 0.55€ 0.55C 0.53¢ 0.554 0.551 0.54t 0.53c
X, Slope 0.40z 0.41C 0.407 0.39¢ 0.38¢ 0.404 0.40z 0.39¢ 0.38€
xs Slope 0.404 0.40¢ 0.40t 0.391 0.38z 0.40¢ 0.40€ 0.394 0.38¢
Intercept Var. 0.80C 0.79C 0.78¢ 0.78¢ 0.78¢ 0.79¢ 0.79z 0.791 0.78:
Covariance 0.11¢ 0.11¢ 0.10¢ 0.10C 0.08¢ 0.11€ 0.11: 0.104 0.094
Slope Var. 0.12¢ 0.12¢ 0.12¢ 0.11t 0.10t 0.127 0.124 0.11¢ 0.11cC
Residual Var. 0.914 0.91¢ 0.91€ 0.92Z 0.934 0.91: 0.91t 0.921 0.931
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Technical Appendix: MCMC Sampling Steps and Distributions for Two-Level Imputation
This appendix gives technical details of the full conditional distributions used to draw
regression coefficients, random effects, and covariance mgficeariance estimates).
Additional details are widely available in the literatuas these distributions largely borrow
from established Bayesian estimation procedures for multilevel m@telsne & Draper,
2000;Cowles, 1996Gelman et al., 201450ldstein et al., @09; Kasim & Raudenbush, 1998;
Schafer, 1997Schafer & Yucel, 2002; Sinharay et al., 2001; van Buuren, 2012; Yucel,.2008)
For the appendix, we abandthe previous scalar notation in favor of a more succinct matrix

representation ohe multilevel model

y; =X +Zu+", (25)

wherey; is the vector of outcome scorfes clusterj, X, is thecorresponding matrix giredictor
variables (levell or levei2), including a unit vector for the interce@t,is a subset of the levél

variables inX; that have a random influence on the outcome (including a unit vector for the
intercept) u; is thecolumnvector of level2 residuals for clustgrand! | is a vector of within
cluster residuals. In the context of F@$s an incomplete variable that is the target of
imputation at a particular step, akdandZ contain complete and previously imputed vaeab

Level2 imputation applies a singlevel regression modé&b a clustedlevel data set witld

records. In matrix format, the model is as follows.

y=X!+" (26)
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Level-1 Gibbs Sampler Steps for Continuous Variables

Step 1: Draw regression coefficients from a multivariate normal distribution, conditional

on the current random effects, parameter estimates, and imputations.

! ~MVN(P, " p)

*1

$ ) '

P:éﬁx}sz éﬁlx}(yj*zjuj)z (27)

*1

g X1,
9=1 "2

We use g subscript on the withueluster residual variande allow for the possibility of
heterogeneous withialuster variances (disissed below), noting that a(ll?j are the same in the

homogeneous case, which is the default in Blimp.

Step 2 Draw clusterspecific random effectsom a multivariate normal distribution

conditional on theurrent parmeter estimates and imputations.

u; ~MVN(d,, V)

% 777 (
V. =11y ' L
)

i u #
@J.:v( 2zT)( " X, )

(28)
&
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Step 3: For a homogeneous witluster variance (the HOV keyword of the OPTION
command, which is the default), draw a residual vaadnom an inverse Gamma distribution,

conditional on the current parameter estimates,2vekiduals, and imputations.

o’ ~1G(a,b)
€ =Y, —(X].[S+Zjuj)
_v ,_S
a=y b= (29

The sum of squares (scale) vafis the sum of a component based on computed-fevel
residuals and the prior distributionOs sum of squareSimilarly, the degrees of freedom value

is a sum based on the data and the degrees of freedom for the pridihe Blimp application
offers two common sets of hyperparameters for the prior distribi8ien0 and!/ | = D2 (the
PRIOR1 keyword of the OPTIONS command), &e 1 and/ ; = 2 (the PRIOR2 keyword of

the OPTIONS command, the default). For a heter@stedwithincluster variance (the HEV
keyword of the OPTIONS command), we implement the procedure descrikadim and
Raudenbush (1998)

Step 4 Draw thelevel-2 covariance matrikom an inverse Wishart distribution,

conditional on the curremarameter estimates, lev2residuals, and imputations.
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L, ~1W(S, ")
J
S=fuju +S, (30)
j=1
II:J+'I

The scale (sum of squares and cisxlucts) matribXS is thesum of a component based on the
level2 residuals fronStep 2and the prior distributionOs scale mafsix, Similarly, the degrees

of freedomvalue is a sum based on the data and the degrees of freedom for the prislimp
offers two common sets of hyperparametier the prior distributionS,=0and/ , =bpb1l
(the PRIOR1 keyword of the OPTIONS commaraf)dS, =1 and/ , =p+ 1 (the PRIOR2

keyword of the OPTIONS commandyherep is the number of random effectBlimp uses the
PRIORL1 hyperparameters as the default becaus&rmutations suggest thttis option gives
better performance when the number of clusters is small.

Step 5: Dravthe imputation for casefrom a univariate normal distribution, conditional

on the current parameter estimates, l&/edsidual terms, angreviously

Y.

ij(mis)

N(X,! +Z,u;,"2) (31)

1 e

Level-1 Gibbs Sampler Stepgor Categorical Variables

The sampling steps faategoricalvariables arexpressed symbolically in Equati¢®).
The initial sampling step that draws threshold parameters, coradibarthe underlying latent
scores and current parameter values, applies owlsdinal variable withK > 2 categories.

Albert and Chib (1993) described an approfactupdating threshold$ut this procedure
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equation reference goes hewavergsvery slowly. Instead, Blimp implements the procedure

described byCowles (1996) CowlesO procedure usddetropolisHastingsprocedure within

the Gibbs sampler to draw each threshold from a normal proposal distributionaecejits the

threshold drevs at some prespecified probabilityn the interest of space, we refer readers to

Cowles (1996) for details on sampling threshold parameters, as the procedure is rather involved
The second step draws latent variable scores for the complete casedirfabr or

variables, latent valuese drawn frona truncated noral distribution For nominal variables,

latent scores are drawn that conform to the necessary rank and magnitude cayidéions

Equation(13). Both situations are described in the body of the manuscript, so we do not repeat

that informatiorhere. The sampling steps fdr, u, and!  are identical to those in Equations
(27), (28), and(30), except thaty!j (the vector of latent variable scoliesclusterj, comprised of

for the complete and incomplete cases) replgdesthe equationsFor nominalvariables, these
sampling steps amepeated for each of tikeb1 latent variable difference scoreghereas they
are performed only once for ordinal variablédter drawing parameter values and legel
residual termdatent variable imputations for the incomplete cases are drawrafrom
unrestricted normal distributip@as described in texThe final step converts the latent imputes
to discrete values using the functions from Equat(8hsr (13), depending on whether a
variable is ordinal or nominal, respectively.
Level-2 Gibbs Sampler Steps for Continuous Variables

After completing a singlé@eration of levell imputation Blimp aggregates all levél
variables, creating &record data set where each row contains the cluster mevel1

variable (complete and imputeaid level2 scores for clustgr The progam then applies
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singlelevel FCS to the incomplete lev2lvariables. The remainder of the appendix describes
the sampling steps for the sindével regression model in Equati@i2t).

Step 1 Draw regression coefficients from a multivariate normal distribution, conditional

on the current parametealuesand imputations.

! ~MVN(!°, " p)
P=(xx)"XTy (32)

#1

" 5= 8%X7X)

Step 2: Draw a residual variance from an inverse Gamma distribution, conditional on the

current parameter estimates and imputations.

!'2~1G(a,b)
"oyHXS
0
a:_/o b:§ (33)
2 2
S: nTwn
%= N

The sum of squares and degrees of freedom values follow from adopting a standard non

informative prior from Bayesian linear regressibgrich, 2007, p. 170

Step 3 Drawanimputation for clustey from a wivariate normal distribution, conditional

on the current parameter values dath
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j(mis) N(X! - i) (34
Level-2 Gibbs Sampler Steps for CategoricaVariables

The level2 Gibbs steps for categorical variablesasdollows. Firstdraw threshold
parameters for ordinal variables wKh> 2 response options. This step follows Cowles (1996),
as described previously. Secoddaw latent variablecoredor the complete cases. For ordinal
variables, latent values are drawn from a truncated normal distribution. For nominal variables,

latent scores are drawn that conform to the necessary rank and magnitude conditions given in

Equation(13). Third,draw regression coefficients from the distribution in Equai8a), where
y" (the vector of latent scores for the full sample) replgcesor nominal variables, this step is

repeated for each of tie- 1 latent difference scores. Fourtiraw latent imputationfor the
incomplete casesom an unrestricted normalsdiibution,as described in the manuscript.

Finally, convert the latent imputes to discrete values using the functions in Equ&jion$13).



