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Abstract

This paper uses a general latent variable framework to study a

series of models for non-ignorable missingness due to dropout. Non-

ignorable missing data modeling acknowledges that missingness may

depend on not only covariates and observed outcomes at previous time

points as with the standard missing at random (MAR) assumption,

but also on latent variables such as values that would have been

observed (missing outcomes), developmental trends (growth factors),

and qualitatively different types of development (latent trajectory

classes). These alternative predictors of missing data can be explored

in a general latent variable framework using the Mplus program. A

flexible new model uses an extended pattern-mixture approach where

missingness is a function of latent dropout classes in combination

with growth mixture modeling using latent trajectory classes. A

new selection model allows not only an influence of the outcomes on

missingness, but allows this influence to vary across latent trajectory

classes. Recommendations are given for choosing models. The missing

data models are applied to longitudinal data from STAR*D, the

largest antidepressant clinical trial in the U.S. to date. Despite the

importance of this trial, STAR*D growth model analyses using non-

ignorable missing data techniques have not been explored until now.

The STAR*D data are shown to feature distinct trajectory classes,

including a low class corresponding to substantial improvement in

depression, a minority class with a U-shaped curve corresponding

3



to transient improvement, and a high class corresponding to no

improvement. The analyses provide a new way to assess drug efficiency

in the presence of dropout.

Keywords: Latent trajectory classes, random effects, survival

analysis, not missing at random
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Introduction

This paper considers growth modeling of longitudinal data with

missingness in the form of dropout that may be non-ignorable. Non-

ignorable missing data modeling acknowledges that missingness may

depend on not only covariates and observed outcomes at previous time

points as with the standard missing at random (MAR) assumption

(Little & Rubin, 2002) customarily made in multivariate analysis

software. Missingness may also depend on latent variables such as

values that would have been observed (missing outcomes), develop-

mental trends (growth factors), and qualitatively different types of

development (latent trajectory classes). Many different missing data

models for such situations have been presented in recent years, e.g.

Albert and Follman (2009), Beunckens et al. (2008), Dantan et al.

(2008), Little (2009), Roy and Daniels (2008), and Yuan and Little

(2009). The proposed models use both continuous latent variables in

the form of random effects and categorical latent variables in the form

of finite mixtures. Because missing data models draw on untestable

distributional assumptions about missing data it is important to do

a sensitivity analysis using several different models. To this aim,

this paper uses a general latent variable framework summarized in

Muthén and Asparouhov (2009) to explore and compare a series

of key models proposed in the literature as well as several new

models. To illustrate the various models, analyses are performed

on data from the trial Sequenced Treatment Alternatives to Relieve
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Depression (STAR*D). Comparisons of models on a given data set

have been hampered by lack of software development for general

missing data analyses, with software typically presented for only a

few model variations considered in the authors’ article. The latent

variable framework of Muthén-Asparouhov is implemented in the

Mplus software (Muthén & Muthén, 1998-2010) which was used for

all analyses in the paper. Estimation is carried out using maximum-

likelihood using the EM algorithm as described in Muthén and

Asparouhov (2009). Mplus scripts for the analyses are available at

http://www.statmodel.com/examples/penn.shtml#stard.

STAR*D is the largest antidepressant clinical trial in the U.S. to

date. Nevertheless, analyses using modern missing data techniques

have not been performed until now. In the STAR*D data, latent

variable mixture modeling can play a role not only in accounting

for different classes of missing data, but also in studying different

classes of drug response. A basic hypothesis is that the population

of subjects consists of a mixture of individuals who do and do not

respond to a drug. The growth models discussed here shed light on

the prevalence of these mixture classes. It is argued that such use of

information from the full longitudinal data offers an advantage over

current antidepressant trial definitions of drug response. The growth

model analyses show that there are well-defined responder and non-

responder classes. Additionally, a class of subjects are found to have

a U-shaped trajectory showing large, but only transient improvement.
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This is of clinical importance in that unsustained early improvement

with a given medication may lead a subject to prematurely discontinue

treatment altogether.

The next section describes the missing data features of the

STAR*D data. Following this, conventional pattern-mixture and

selection missing data modeling are applied to STAR*D. The next

sections consider modeling with a mixture of latent subgroups of

subjects. First, growth mixture modeling under MAR is applied to the

STAR*D data. Second, existing mixture pattern-mixture and mixture

selection models are applied. Third, new mixture pattern-mixture and

mixture selection model extensions are applied. Finally, the proposed

models for STAR*D are compared by introducing a new type of model

that includes the ultimate outcome of the study.

The STAR*D antidepressant clinical

trial

STAR*D is a multi-site clinical trial of n = 4041 outpatients ages 18

- 75 diagnosed with Major Depressive Disorder (MDD; Rush et al.,

2004; Trivedi et al., 2006). Subjects were treated with citalopram, a

selective serotonin reuptake inhibitor (SSRI). There was no placebo

group. The current analyses focus on subjects going through the 12-

week “Level 1” treatment step of STAR*D with depression severity

repeatedly measured by a summed score from the 16-item Quick
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Inventory of Depressive Symptoms-Clinician-Rated (QIDS-C, or QIDS

for short here) with a range of 0-27. The Level 1 visit schedule included

baseline and weeks 2, 4, 6, 9, and 12. Of the 4041 subjects, 995 had

complete data for all six occasions, 420 dropped out after the baseline,

299 dropped out after week 2, 301 dropped out after week 4, 484

dropped out after week 6, and 983 dropped out after week 9. In this

way, 62% of the subjects had a dropout missing data pattern, 14% had

non-dropout intermittent missingness, and 25% had complete data for

all six occasions. The coverage at baseline and weeks 2, 4, 6, 9, and

12 was 1.00, 0.79, 0.69, 0.68, 0.57, and 0.39.

In the clinical trial literature, ’dropout’ refers to a subject

who leaves the treatment trial and on whom no further data are

available. In STAR*D, some subjects left Level 1 treatment because

of medication intolerance and were moved to Level 2 treatment. In

the context of the clinical trial, these subjects were not considered

dropouts because they continued on a different treatment. For the

purposes of the statistical analyses presented here, however, these

subjects are considered to be dropouts because of the absence of

further Level 1 data.

STAR*D distinguished between three different Level 1 end-point

categories of subjects: Subjects were moved to the next level if the

medication was ineffective or not tolerated (35%); subjects were moved

to follow-up if showing remission (37%); and subjects exited the

study for unknown reasons (28%). Here, remission was defined as a
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Hamilton-D score ≤ 7 and if not available, a self-reported QIDS score

≤ 5 (Hamilton-D was measured only at baseline and end of Level 1).

The percentage of dropouts in the three Level 1 end-point categories

were: 61% (next level), 35% (follow-up), 95% (exit study).

Figure 1 shows the mean curve over the six time points for the

total sample and for subjects in each of the three Level 1 end-point

categories. The figure also includes the average score among those who

did and did not drop out at the next time point. It is seen that for

the category Next level subjects with higher depression scores tend to

drop out, whereas for the category Follow-up less depressed subjects

tend to drop out.

[Figure 1 about here.]

The missing at random (MAR; Little & Rubin, 2002) assumption

of dropout as a function of the observed QIDS outcome is not

necessarily fulfilled for subjects in any of the three Level 1 end-point

categories. Variables not measured or not included in the model, that

is, latent variables, may affect missingness. Some subjects may leave

Level 1 because of not tolerating the medication, unrelated to the

level of depression. Some subjects may leave the study for unknown

reasons. Also, remission (moving subjects to follow-up) was typically

determined by Hamilton-D, not the clinician-rated score used as the

outcome in the analysis; Hamilton-D could not be used as the analysis

outcome because it was measured only at baseline and end of Level

1. Modeling that explores possibly non-ignorable missing data is
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therefore of interest in order to draw proper inference to the population

of subjects entering Level 1.

It should be emphasized that inference from the STAR*D study is

limited by having no placebo group. There are no treatment groups

to be compared during the Level 1 phase considered here. Muthén

and Brown (2009) have shown how randomized designs with a placebo

group enables causal effect estimation using growth mixture modeling,

where placebo response can be taken into account. For studies with

this design, the missing data modeling to be discussed here can be

combined with the Muthén-Brown approach.

Pattern-mixture and selection model-

ing

Growth modeling analyses based on maximum-likelihood estimation

typically use the assumption of missing at random (MAR; Little &

Rubin, 2002). This covers situations where dropout is predicted by

previously observed outcome values. Missing data due to dropout may

not, however, fulfill the MAR assumption but may call for missing data

techniques that handle non-ignorable missingness, sometimes referred

to as not missing at random (NMAR). NMAR arises if unobserved

variables that are correlated with the outcome predict missingness,

such as a high or a low outcome value that is not recorded because

the subject drops out. NMAR situation can be handled by using a

10



“full-data” likelihood analysis which considers as data not only the

outcomes but also 0/1 missing data indicators for each time point

(see, e.g. Little, 2009). Consider the full-data likelihood in symbolic

form where y refers to the outcome vector and m refers to the binary

missing data indicators,

[y,m] = [m] [y|m], (1)

= [y] [m|y], (2)

where the first expression refers to the the “pattern-mixture modeling”

approach (see, e.g., Little, 1995) and the second expression to the

“selection modeling” approach (see, e.g., Diggle & Kenward, 1994).

“Shared-parameter modeling” considers the likelihood factorization

[y,m] =
∑
c

[c] [m|c] [y|c], (3)

where c represents latent class variables influencing both the outcomes

y and the missingness indicators m. Shared-parameter modeling may

also use latent variables in the form of random effects, replacing the

sum in (3) with integrals. It should be noted that each NMAR model

involves untestable assumptions due to missing data. It is therefore

important to compare results from several different models to achieve a

sensitivity analysis. Recent overviews of NMAR modeling are given in

Albert and Follman (2009) and Little (2009). In longitudinal studies,

the non-ignorability concern is typically focused on missing data in
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the form of dropout, not intermittent missingness. This is the focus

also of this study.

Pattern-mixture modeling

Pattern-mixture modeling (see, e.g., Little, 1995; Hedeker & Gibbons,

1997; Demirtas & Schafer, 2003) considers the likelihood factorization

[y, d] = [y|d] [d], where the d variables can be represented by dummy

variables for dropout occasion. A simple version of the model allows

the random effect means to vary as a function of the dropout dummy

variables. A quadratic growth model is used for STAR*D.

To facilitate understanding and comparisons of the alternative

missing data models, the statistical description of the modeling is

complemented by model diagrams. The pattern-mixture model is

shown in model diagram form as in Figure 2, where squares represent

observed variables and circles latent variables. Here, y0− y5 represent

the depression outcomes at baseline and through week 12,whereas i, s,

and q represent the random intercept, slope, and quadratic slope. Note

that these model diagrams are not geared towards causal inference.

Single-headed arrows simply represent regression relationships and

double-headed arrow represent correlations. The goal of the modeling

is not to draw inference on causal effects, but to understand important

sources of variation in the depression outcomes over time.

[Figure 2 about here.]

The y0 − y5 outcomes show a total of 34 missing data patterns
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in the total sample of n = 4041. The dummy dropout indicators dt

are defined as dt = 1 for a subject who drops out after time t − 1

(t = 1, 2, . . . 5) for the six time points. In the STAR*D data, the

frequencies of dt = 1 are 420 (d1), 299 (d2), 301 (d3), 484 (d4), 983

(d5). There are 995 subjects who have all d’s equal to zero, that is, do

not drop out. The five dummy dropout indicators thereby define six

subgroups of subjects. Intermittent missingness is observed for 559

subjects. These subjects are spread among five of the six subgroups,

excluding the d1 = 1 subgroup. Missing data is recorded for each

subject and outcome variable. This implies that within each of the

six subgroups, a subject with intermittent missingness is treated the

same as a subject with complete data up to that point.

The pattern-mixture model typically needs restrictions on the

parameters across dropout patterns. For example, with individuals

dropping out after the first time point, the linear and quadratic slope

means are not identified and for individuals dropping out after the

second time point, the quadratic slope mean is not identified. In the

current application of pattern-mixture modeling, these means are held

equal to those of the pattern corresponding to dropping out one time

point later. The random effect mean estimates are mixed over the

patterns. This mixture can then be compared to the conventional

single-class model estimated under MAR. The resulting estimated

mean curve is shown in Figure 3. It is seen that the estimated mean

QIDS depression score at week 12 is somewhat higher using pattern-
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mixture modeling than using MAR, as would be expected if dropouts

have higher QIDS score. The week 12 QIDS standard deviation is 5.3

so that the difference is approximately half a standard deviation.

[Figure 3 about here.]

Selection modeling

Selection modeling uses the likelihood factorization [y, d] = [y] [d|y],

where the ds are survival indicators. An often cited model for selection

modeling is the one proposed by Diggle and Kenward (1994). A

common form of the Diggle-Kenward selection model assumes the

logistic regression model for dropout,

log[
P (dti = 1|yti, yt−1,i)
P (dti = 0|yti, yt−1,i)

] = αt + β1 yti + β2 yt−1,i, (4)

where the d variables are scored as discrete-time survival indicators,

obtaining the value 0 for time periods before the dropout event occurs,

1 at the time period the dropout occurs, and missing for the time

periods after the event occurs (Muthén & Masyn, 2005). Here, yti is

missing for an individual who has dti = 1, that is, drops out after t−1.

According to this model, MAR holds if β1 = 0, that is, dropout is a

function of the last observed y value, not the current latent y value.

To complete the model, a quadratic growth curve is used as before

for the STAR*D data. The model is shown in diagram form in

Figure 4. Circles within squares represent variables that are not
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observed for the subjects who drop out.

[Figure 4 about here.]

Applying the Diggle-Kenward model to the STAR*D data shows

a significant positive maximum-likelihood (ML) estimate of β1. The

significance of β1 suggests that NMAR modeling is of interest. The

estimated mean depression curve for the Diggle-Kenward model is

seen in Figure 3, showing a trajectory similar to the pattern-mixture

model.

Model assumptions

It should be noted that MAR, pattern-mixture, and Diggle-Kenward

selection modeling use different assumptions. It is instructive to

consider the Diggle-Kenward model. If the model is correctly specified,

β1 6= 0 in (4) may be viewed as an indication of NMAR. This, however,

relies on the Diggle-Kenward model’s untestable assumptions about

the selection process (4) and the normality assumptions which are

made for unobserved variables. As stated by Little (1994) in the

discussion of the article:

”Consider a single drop-out time, and let Y1 denote the

(fully observed) variables up to drop-out and Y2 the

(incompletely observed) variables after drop-out. The data

clearly supply no direct information about the distribution

of Y2 given Y1 for subjects who drop out. — differences
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in the distribution of Y2 given Y1 for those who do and

do not drop out are solely determined by distributional

assumptions of the model, such as the form of the model

for drop-outs, normality, or constraints on the mean and

covariance matrix.”

Considering ”the distribution of Y2 given Y1 for those who do and

do not drop out” implies a conditioning on dropout, which means

that the assumption of logistic regression for dropout is involved.

Consequently, β1 6= 0 cannot be seen as a test rejecting MAR because

assumptions not included in MAR are added in the Diggle-Kenward

model.

MAR also makes normality assumptions for the outcomes which

are untestable for the outcomes after dropout. But, the MAR

assumptions do not involve a logistic regression for dropout. Pattern-

mixture also makes normality assumptions for the outcomes, but the

normality is conditional on dropout patterns. All in all, this implies

that none of the models is a special case of the other. The models

should all be applied and results compared.

MAR modeling with latent subgroups

of subjects

In the context of the STAR*D depression example, the basic psy-

chiatric hypothesis postulates a mixture of subjects who do and do
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not respond to the drug. In other words, there is a hypothesis of

a latent class variable underlying the outcomes. This means that

the conventional, single-class pattern-mixture and selection models

are insufficient modeling tools for this example. Selection and

shared-parameter modeling using a latent class variable has been

suggested in the literature, but the emphasis has not been so much on

recovering substantively-motivated trajectory classes as to represent

non-ignorable missingness. Pattern-mixture modeling with a latent

class variable has also been suggested in the literature, but merely

to better summarize dropout patterns. In this section the MAR

assumption is used and a description is given of growth mixture

modeling with substantively-motivated trajectory classes. Later

sections return to the study of growth mixtures in the context of

pattern-mixture and selection modeling.

Of psychiatric concern in antidepressant trials such as STAR*D is

to identify subjects who show either ”remission”, that is, have reached

a sufficiently low depression level by the end of the trial, or ”response”,

that is, have significantly dropped in depression level since baseline.

The psychiatric definition of remission is in this case a Hamilton-D

score ≤ 7 or a self-reported QIDS score ≤ 5. ”Response” is defined as

a drop of at least 50% in the score from baseline. Such definitions are

to some degree arbitrary and slightly different cutpoints can give quite

different results. The approach may also suffer from large individual

variability in the outcomes over time. Muthén et al. (2009) and
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Muthén and Brown (2009) used growth mixture modeling to instead

define response as the percentage of subjects in a latent trajectory

class with a distinctly low trajectory mean towards the end of the

trial. This has the advantage of using information from all time points

and focusing on trajectory shape. Growth mixture modeling combines

random effects modeling in conventional repeated measures analysis

with finite mixture modeling using latent class variables to represent

qualitatively different classes of trajectories (Muthén & Shedden, 1999;

Muthén et al., 2002; Muthén & Asparouhov, 2009). Growth mixture

modeling is currently used in a wide variety of settings, see, e.g. Lin

et al. (2002) for an application to the joint study of PSA development

and prostate cancer survival, Elliott et al. (2005) for an application to

identifying trajectories of positive affect and negative events following

myocardial infarction, Beunckens et al. (2008) for an application to

non-ignorable missing data modeling in a depression trial, and Muthén

and Brown (2009) for an application to the estimation of drug effects

in the presence of placebo response. Mixture modeling with missing

data is also used in the context of models assuming latent ignorability

as applied to non compliance in randomized trials; see, e.g. Frangakis

and Rubin (1999), Muthén, Jo and Brown (2003), and Mealli et al.

(2004).

Consider a quadratic growth mixture model with a latent trajec-

tory class variable c assuming values k = 1, 2, . . . ,K,

yti|ci=k = η0i + η1i (at − ā) + η2i (at − ā)2 + εti, (5)
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where the random effects distributions are allowed to vary as a

function of the trajectory classes k,

η0i|ci=k = α0k + ζ0i, (6)

η1i|ci=k = α1k + ζ1i, (7)

η2i|ci=k = α2k + ζ2i. (8)

The residuals ζi have zero means and a 3 × 3 covariance matrix Ψk,

here taken to be constant across the latent classes. The residuals

εti have zero means and a T × T covariance matrix Θk, here taken

to be constant across classes as well. All residuals are assumed i.i.d

and normally distributed. As an alternative, a 2-piece growth model

can be used with a first linear piece describing early drug response

during the first two weeks as in Uher et al. (2009) and Hunter et al.

(2009). The 1-piece model is chosen here for simplicity and because

the 2-piece model simply gives an elaboration with an additional minor

class showing early response which at week 12 coincides with the low

class of the 1-piece model. There was no evidence of a need for class-

varying covariance matrices. As seen in Table 1 1-6 latent classes

were studied. The conventional 1-class model is clearly superseded by

multi-class models as judged by BIC. After 4 classes BIC decreases

very little and the 5- and 6-class solutions offer only variations on the

trajectory shapes found with 4 classes. The 4-class model is therefore

considered here.
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[Table 1 about here.]

[Figure 5 about here.]

The 4-class GMM solution estimated under MAR is shown in

Figure 5. The classes are well separated with a within-class standard

deviation at week 12 of 2.42. From a substantive point of view, three of

the four classes are of particular interest. It is seen that an estimated

55% of the subjects are in a distinct, low class (Class 2) showing

drug response. An estimated 15% are in a high, non-responder class

(Class 4). A minority class of 3% (Class 1) shows rapid initial

improvement through week 6 with later worsening, a U-shaped curve

that corresponds to transient improvement and possibly ”placebo

only” response (Muthén & Brown, 2009). Placebo responders do not

benefit from the drug but may benefit from the attention of the staff.

The small size of the class, however, makes interpretation of this class

questionable and it is of interest to see if NMAR modeling alternatives

find this class.

The growth mixture modeling makes it clear that the single-

class analyses using pattern-mixture and selection modeling shown

in Figure 3 give a representation of the course of depression that is

insufficient from a substantive point of view. The growth mixture

modeling presented so far, however, assumes MAR and needs to be

generalized to accommodate non-ignorable missingness as discussed in

the sections to follow.
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Existing NMAR models with latent

subgroups of subjects

This section explores the STAR*D data using key NMAR models

with latent subgroups of subjects suggested in the literature. First, a

latent class version of the pattern-mixture model due to Roy (2003)

is presented. Second, the Beunckens et al. (2008) mixture selection

model is presented.

Roy latent dropout pattern-mixture modeling

The conventional pattern-mixture approach has been criticized in Roy

(2003):

”One modeling approach is to assume the distribution ... is

a mixture over dropout patterns. However, this may lead to

bias due to misclassification (i.e. by assuming every subject

with the same dropout time has a common distribution). In

addition, when there are a large number of unique patterns,

this leads to sparse data. In that case, pattern-mixture

models require further restrictions on the parameters for

identifiability.”

As an alternative to the conventional pattern-mixture model, Roy

(2003) proposed a latent dropout pattern-mixture model using a latent

class variable that is influenced by dropout time and influences the

random effect means for the outcomes. Here, dropout time is a single
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covariate coded with discrete values. Instead of dropout time, Dantan

et al. (2008) suggested using dummy variables for dropout occasion.

Applied to the STAR*D data there is little difference in results using

dropout time or dropout dummy variables. The Roy model implies

a growth mixture model as in (5) - (8). Latent class membership is

specified as a multinomial logistic regression using the dropout dummy

variables as covariates,

P (ci = k | d1i, . . . dT i) =
eγ0k+

∑T
t=1 γtk dti∑K

s=1 e
γ0s+

∑T
t=1 γts dti

. (9)

This shows that the Roy latent dropout model can be seen as

both a pattern-mixture type model and a “shared-parameter” model.

Figure 6 shows the model diagram. Because of (9), the arrows from

the dropout dummies point to the latent class variable and therefore

indirectly to the outcomes.

[Figure 6 about here.]

It should be emphasized that although the Roy model uses latent

subgroups of subjects, the conceptualization of these subgroups is

different from that of the growth mixture model in the previous

section. Roy (2003) views the formation of latent subgroups as a better

dropout classification of subjects than using observed dropout time.

In contrast, growth mixture modeling views the latent subgroups as

representing different outcome trajectory types, which may or may

not be related to dropout time. As will be argued in a forthcoming
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section that presents a new type of Roy model, the latent subgroup

formation in Roy (2003) is influenced not only by dropout time but

also by trajectory type and this makes the interpretation of results

from the Roy model less clear cut.

Table 2 shows the log likelihood, number of parameters, and BIC

values for the conventional pattern-mixture model and the Roy latent

dropout model for K = 2, 3, 4, 5. The superiority of the Roy model

over the conventional pattern-mixture model is seen in the 2-class

model having better log likelihood with fewer parameters. In terms of

BIC, the 4-class model is preferable.

The ”misclassification” referred to in the above Roy (2003) quote

is clearly evident in the STAR*D example. There is little agreement

between the cross-classification of subjects using the six pattern-

mixture dropout patterns versus using Roy 4-class latent dropout

classes. As will be shown, this is likely due to the latent dropout

classes being influenced also by trajectory types.

In line with conventional pattern-mixture modeling, the Roy latent

dropout modeling is primarily focused on the mixture over the latent

classes:

”While the class-specific estimates are informative, they are

not of primary interest.” (Roy, 2003, p. 834)

The resulting depression mean curve estimated by Roy latent dropout

modeling largely overlaps that of pattern-mixture modeling given in

Figure 3 and is not shown. The curves of Figure 3, however, do not
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reveal if subgroups of subjects show different results under different

NMAR models and under MAR.

Instead of mixing over the four classes of the Roy latent dropout

model, it is of interest to consider their interpretation in terms of

antidepressant response and compare to the 4-class MAR growth

mixture model of Figure 5. The four estimated mean depression

curves are shown in Figure 7. The trajectory shapes and therefore

the interpretations of the latent classes are in line with Figure 5. For

the Roy model, only 43% of the subjects are estimated as responding

with as many as 28% non responders and 18% showing a U-shaped

curve of transient improvement. To conclude, the Roy NMAR model

gives a considerably worse assessment of the drug efficiency than the

4-class MAR model.

[Table 2 about here.]

[Figure 7 about here.]

Beunckens selection modeling with latent sub-

groups of subjects

Beunckens et al. (2008) introduced a model which combines selection

modeling features with shared-parameter modeling features. The

model has selection features in that it uses discrete-time survival

dropout indicators as dependent variables influenced by the random

effects of the outcome process for y in line with Wu and Carroll (1988).
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The model has shared-parameter modeling features in that both the

survival dropout indicators and the depression outcomes are influenced

by a latent class variable and random effects.

A special case of the model can be specified in line with Beunckens

et al. (2008, equation 7), where the survival dropout indicators are

influenced by both latent class as well as the random intercept η0i,

yti|ci=k = η0i + η1i (at − ā) + η2i (at − ā)2 + εti, (10)

η0i|ci=k = α0k + ζ0i, (11)

η1i|ci=k = α1k + ζ1i, (12)

η2i|ci=k = α2k + ζ2i, (13)

log[
P (dti = 1|ci = k, η0i)
P (dti = 0|ci = k, η0i)

]|ci=k = αk + β1k (at − ā) + β2k (at − ā)2 + β3 η0i,

(14)

where in (14) the dependence of dropout on latent class in the first

three terms is formulated as a quadratic latent class growth model

which reduces the number of parameters relative to estimating free

parameters for each class and time point. As before, the d variables

are scored as discrete-time survival indicators, obtaining the value 0

for time periods before the dropout event occurs, 1 at the time period

the dropout occurs, and missing for the time periods after the event

occurs (Muthén & Masyn, 2005). The model is shown in diagram

form in Figure 8.
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[Figure 8 about here.]

[Table 3 about here.]

[Figure 9 about here.]

The results of fitting 1-5 classes are shown in Table 3. The 1-class

model is in line with Wu and Carroll (1988). The 4-class model has the

best BIC. For comparison the results for the Diggle-Kenward model

are also given. It has a better BIC than the 1-class Beunckens model,

but worse BIC than the 4-class Beunckens model.

The estimated mean trajectories for the 4-class Beunckens model

are shown in Figure 9. The low class of responding subjects is

estimated as 35%, whereas the high class is estimated as 25% and

the U-shaped class is estimated as 19%.

The Beunckens model is related to mixed-effects hybrid modeling

(MEHM) proposed by Yuan and Little (2009). In both cases discrete-

time survival is predicted by random effects (growth factors). While

Beunckens lets the random effect means vary over latent classes, Yuan-

Little lets the means vary over categories defined by dropout time.

Because of the latent versus observed categories distinction, the Yuan-

Little approach relates to the Beunckens approach much like pattern-

mixture modeling relates to Roy modeling. The Yuan-Little modeling

can be handled as in Figure 8, adding a covariate representing dropout

time that influences the growth factors.
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Extensions of NMAR models

This section explores the STAR*D data using two new NMAR models.

First, the Roy pattern-mixture model is expanded, adding a second

latent class variable. Next, the Diggle and Kenward selection model

is generalized to include latent subgroups of subjects.

Pattern-mixture modeling: Muthén-Roy mod-

eling with latent subgroups of subjects

For both conventional pattern-mixture modeling and Roy latent

dropout modeling the intention is to mix the parameter estimates

over the patterns/classes to obtain an overall estimated growth curve.

This mixing may, however, hide substantively interesting trajectory

classes. Furthermore, the Roy approach forms classes based not only

on the relationship between dropout and outcomes, but also based

on the development of the outcomes over time. This may confound

dropout classes with trajectory classes.

To alleviate these concerns, a new type of pattern-mixture model

is introduced here, using a generalization that allows for two distinct

latent class variables: one related to dropout and another related to

the outcome trajectories. The former latent class variable summarizes

dropout patterns and the latter provides information about substan-

tively interesting trajectory classes. The model will be referred to as

the Muthén-Roy model and is specified as follows, defining a latent
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class variable cd for K dropout groups and a latent class variable cy

for L trajectory types of the depression outcome y.

yti|cdi=k,cyi=l = η0i + η1i (at − ā) + η2i (at − ā)2 + εti, (15)

η0i|cdi=k,cyi=l = α0kl + ζ0i, (16)

η1i|cdi=k,cyi=l = α1kl + ζ1i, (17)

η2i|cdi=k,cyi=l = α2kl + ζ2i. (18)

The two latent class membership relationships

P (cdi = k | d1i, . . . dT i) =
eγ0k+

∑T
t=1 γtk dti∑K

s=1 e
γ0s+

∑T
t=1 γts dti

, (19)

P (cyi = l | d1i, . . . dT i) =
eγy0k∑K
s=1 e

γy0s
, (20)

can be combined in the following bivariate loglinear form where cd

and cy are allowed to correlate via γ0ydkl,

P (cdi = k, cyi = l|d1i, ..., dT i) =
exp(γ0dk + γ0yl + γ0ydkl +

∑T
t=1 γtkdti)∑

k,l exp(γ0dk + γ0yl + γ0ydkl +
∑T

t=1 γtkdti)
(21)

where γ0dk, γ0yl, γ0ydkl, γtk are fixed to 0 for identification purposes

when either k or l are the last class categories. Part (a) of Figure 10

shows the model in diagram form.

[Figure 10 about here.]

It is clear from (19) and (20) that cd and cy play different roles in

the model. While both cd and cy influence the random effects, cy is
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not influenced by the dropout dummy variables. One way to view the

model is that cy represents substantively different trajectory shapes

which are moderated by cd within each cy class. Centering at the first

time point so that the random intercept η0 is the systematic part of

the variation in the baseline y outcome, this way of viewing the model

is emphasized by holding the random intercept means for each cy class

equal across the cd classes.

Table 4 gives the results for a series of Muthén-Roy models.

The table shows that the 3cy, 2cd Muthén-Roy model uses fewer

parameters than the Roy 4c model (also referred to as 1cy, 4cd),

but has a better log likelihood value. The best BIC is obtained for

the 4cy, 2cd Muthén-Roy model. With two dropout classes, the

classes are distinguished only by a stronger or weaker tendency to

drop out, with no differentiation of the timing of dropout. A class

with a higher dropout tendency can, however, exhibit different curve

shapes in combination with different trajectory classes as will be seen

next.

[Table 4 about here.]

The estimated mean curves for the 4cy, 2cdMuthén-Roy model are

shown in Figure 11. The model uses eight classes, combining the four

cy classes and the two cd classes. To simplify the figure visually, the

eight curves are separated into four panels. Because of the random

intercept mean equalities, giving the same baseline value, there are

four pairs of curves. The estimates for the γ slope parameters of
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the logistic regression (19) show that subjects who drop out are more

likely to be in cd class 1. The curves corresponding to the dropout

class (cd = 1) are marked with triangles. Classes 1 - 4 are classes

where subjects have a higher tendency to drop out and classes 5-8 are

classes where subjects have a higher tendency to stay in the study.

The legends give the class percentages for the different curves.

It is interesting to compare the estimated dropout curves of

Figure 11 to the Figure 1 observed means before dropout denoted by

triangles. The Figure 11 dropout curves for panel (a) and panel (c)

appear to reflect the observed means for subjects moved to the next

level seen in Figure 1, panel (b). The Figure 11 U-shaped dropout

curves for panel (b) and panel (d) appear to reflect the observed

means for subjects moved to follow-up seen in Figure 1, panel (c).

These relationships are explored in a later section.

Panel (b) shows two classes with similar development of decreasing

depression scores up to week 6, where both curves are close to the level

deemed as ”remittance”. The 14.8% class 2 subjects, however, show

a U-shaped curve with a substantially worsening depression level by

week 12 whereas the 24% class 6 subjects respond. It is of substantive

interest to further explore the different characteristics of subjects in

these two classes. Class 2 subjects may be prematurely moved to the

follow-up phase.

A second U-shaped curve is found in class 4 with 4.5% of the

subjects, although not dipping as low as for class 2. A second class,
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class 8 with 8%, shows response adding to a total 32% showing

response using this model. The corresponding percentage for the

U-shaped class of the 4-class Roy model is similar at 18%, while

the response class percentage of 43% is somewhat higher. Choosing

between models is discussed in a later section.

[Figure 11 about here.]

Selection modeling: Diggle-Kenward modeling

with latent subgroups of subjects

The Diggle-Kenward model may be contrasted with the Beunckens

model. In the former, the survival dropout indicators are influenced

directly by the depression outcomes. In the 1-class case, this gives a

better BIC than having survival be influenced by random effects. The

use of multiple classes, however, makes the Beunckens model have

a better BIC than Diggle-Kenward. For these reasons, the Diggle-

Kenward model is here extended to a mixture model specified as

follows.

yti|ci=k = η0i + η1i (at − ā) + η2i (at − ā)2 + εti, (22)

η0i|ci=k = α0k + ζ0i, (23)

η1i|ci=k = α1k + ζ1i, (24)

η2i|ci=k = α2k + ζ2i, (25)
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log[
P (dti = 1|yti, yt−1,i)
P (dti = 0|yti, yt−1,i)

]|ci=k = αtk + β1tk yti + β2tk yt−1,i. (26)

Alternatively, a quadratic latent class growth model can be specified

for the αtk coefficients in line with (14). The logistic regression slopes

β of (26) are here allowed to vary across the latent classes. This is

important because subjects in high trajectory classes tend to drop out

due to high depression values, while subjects in the low class tend to

drop out due to low depression values.

To provide further generality the β slopes are allowed to also vary

across time. For example, a subject’s dropout probability may be

less influenced by the depression score early in the study while later

failure to reduce depression may have greater influence on dropout.

The model is shown in diagram form in part (b) of Figure 10.

Table 5 shows the results of fitting a series of Diggle-Kenward

selection mixture models using four classes as for the Beunckens

model. For comparison, the conventional 1-class Diggle-Kenward

model is also presented. The 4-class model 1 specifies class- and time-

invariant β slopes in (26) as well as class-invariant αt values. The

4-class model 2 allows class-varying β and class-varying αt, where the

class variation in α is specified as a quadratic function as in (14). The

4-class model 3 is as the 4-class model 2 but also allows β variation

across time. It is clear from both BIC and likelihood-ratio χ2 testing

that the 4-class model 3 is preferable. Based on BIC, this model is

also preferable to the 4-class Beunckens model of Table 3.
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The estimated mean curves for the 4-class model 3 are shown in

Figure 12. The low class of subjects who respond is estimated as 45%,

the high class of non responders is estimated as 18%, whereas the

U-shaped class is estimated as 6%. These estimates lie in between

of those obtained with MAR on the one hand and Muthén-Roy and

Beunckens on the other hand.

[Table 5 about here.]

[Figure 12 about here.]

Comparing models

Summary of percentages

This section summarizes the results for the preferred models: the 4-

class model in the MAR family, the Muthén-Roy 4c, 2c model in the

pattern-mixture family, and the Diggle-Kenward 4-class model 3 in

the selection family. Table 6 gives the model-estimated percentages

for the high class, the U-shaped class, and the low class for these three

models.

It is also useful to consider model-estimated results presented in

the traditional form of antidepressant trials. Traditionally, remission

is defined as an endpoint depression score less than a certain cutpoint,

in this case week 12 QIDS score ≤ 5. Also, drug response is defined as

a drop in the depression score of at least 50% from baseline to week
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12. Table 6 also includes these percentages for the three models, as

well as for the traditional 1-class MAR model.

It is clear from Table 6 that the models have a wide range of

estimates for the percentage in the three latent classes. The 4-class

MAR model has a high response rate of 55% with a total of only

18% in the failing high and U-shaped classes. This gives a much more

positive view of the antidepressant than the Muthén-Roy model’s 32%

responders and 29% in the failing high and U-shaped classes.

For all the models, the low class percentage is closer to the response

percentage than the remission percentage. Although the mean of the

low class at week 12 is below the ≤ 5 cutoff, not all subjects in the class

are. Instead, the trajectory shape determines the class membership.

[Table 6 about here.]

Choosing between models

Choosing between the MAR, pattern-mixture, and selection models is

difficult given that the three model types have different likelihood

and BIC metrics. The different metrics are due to the models

having different sets of dependent variables. The loglikelihoods

of pattern-mixture, Roy, and Muthén-Roy models are comparable.

Likewise, the selection models of Diggle-Kenward and Beunckens have

comparable loglikelihoods. Comparing loglikelihoods between models

not belonging to the same family, however, is not informative. Nor

are the loglikelihoods for either NMAR family comparable to MAR
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models, a fact that is not always made clear in the NMAR literature.

For example, it is not correct to view the MAR mixture model as a

special case of the Roy model where there is no influence of dropout

indicators on latent class membership, that is, γtk = 0 in (9). This

is because the MAR model allows for dropout and the y outcome to

be related in that observed y values are allowed to influence dropout

(see, e.g., Demirtas & Schafer, 2003).

The question arises which analysis strategy a researcher should

take with dropout. It is suggested here that a first step is to find the

best model using BIC within each of the three families of models, MAR

(including both single- and multiple-class models), pattern-mixture

(including Roy and Muthén-Roy modeling), and selection (single-

and multiple-class models). If results from the three approaches

all agree, then the MAR results are supported and a researcher

can present the MAR results with the additional information that

NMAR explorations do not contradict the findings. If pattern-

mixture and selection modeling agree, but the MAR results disagree

in substantively important ways, it seems reasonable to present both

the MAR and NMAR results and raise the possibility that the NMAR

results may be more trustworthy. If results from all three approaches

disagree, there is no statistical basis for preferring the results any of

the models. Instead, the range of results need to be reported as in

Table 6.

In some exceptional cases, however, the models can be compared
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in terms of how they relate to auxiliary information about the reasons

for dropout. Such information is fortunately available in the STAR*D

data. This is explored next.

Adding auxiliary information

The STAR*D data have useful auxiliary information in the form of

the subject’s ending status in the 12-week Level 1 part of the trial.

As mentioned in the introduction, STAR*D distinguished between

three different end categories: Subjects were moved to the next level if

the medication was not completely effective or not tolerated; subjects

were moved to follow-up if showing remission; or subjects exited the

study for unknown reasons. Adding a missing data category, this

gives a four-category nominal variable u, say, standing for ultimate,

or distal, outcome. The three competing models, MAR, Muthén-Roy,

and mixture Diggle-Kenward, can be augmented by the u outcome,

where the added parameters are the three u probabilities varying

across the latent classes of those models. The u variable is useful

for NMAR modeling because it carries more information than the

observed y outcome given that it also relates to side effects and

subject preferences. The ability of the original model to capture

non-ignorable missingness can be assessed by studying the congruence

between the latent class formation when not including versus including

the u variable in the model.

The Muthén-Roy model can be extended to allow u to be
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influenced not only by the two latent class variables cd and cy, but

also the dropout indicators d. For r = 1, 2, . . . , R (R = 4),

P (ui = r | cdi = k, cyi = l, d1i, . . . dT i) =
eγ0rkl+

∑T
t=1 γtr dti∑R

s=1 e
γ0skl+

∑T
t=1 γts dti

.

(27)

Figure 13 shows the extended Muthén-Roy model in diagram form. In

the extended model, the relationship between latent class membership

and the end categories provides a predictive validity check of the latent

classes.

[Figure 13 about here.]

Figure 14 shows the estimated mean curves for the MAR and

mixture Diggle-Kenward models extended to include u. Figure 15

shows the estimated mean curves for the extended Muthén-Roy model.

Unlike for Figure 11 the eight curves are shown in a single graph. The

specification in (27) was used for Muthén-Roy, where including the d’s

as covariates influencing u improved the BIC but had little effect on

the parameter estimates.

[Figure 14 about here.]

[Figure 15 about here.]

The extended MAR model retains the trajectory shapes of the original

latent classes, but it is seen that it obtains a lower percentage in the

low class than in the original MAR model, 42% compared to 55%.

The extended mixture Diggle-Kenward model also obtains a reduced
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percentage in the low class, 37% as compared to 45%. The high class

is reduced from 18% to 15%. The extended mixture Diggle-Kenward

model does not, however, retain the U-shaped class of the original

Diggle-Kenward model. The extended Muthén-Roy model largely

retains the trajectory shapes of the original model. The low class

percentage remains unchanged at 32% and the high class percentage

changes only from 14% to 13%. The U-shaped class is now more

clearly accentuated and distinguished as the only class that shows a

substantial temporary improvement, with an outcome well below 5,

and subsequent worsening. The class percentage is changed from 15%

to 9%. All in all, the Muthén-Roy model appears as the model most

congruent with the u outcome.

The Muthén-Roy plot shows an interesting phenomenon related

to the U-shaped class and the low class. Starting out the same as

the low class, the U-shaped class has the higher dropout tendency.

This is because many subjects in the 9% U-shaped class have a

score ≤ 5 and are likely to be moved to follow-up. The U-shaped

class, however, is characterized by a temporary improvement and later

worsening. The low class estimate of 37% in the extended mixture

Diggle-Kenward model may be biased upwards because it does not

allow for a portion of those subjects following U-shaped trajectories.

The existence of such subjects in the data is demonstrated in Figure 16

showing observed trajectories for subjects classified into the U-shaped

class by the extended Muthén-Roy model. In this sense, the Muthén-
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Roy model appears more flexible than the mixture Diggle-Kenward

model in this application.

[Figure 16 about here.]

[Table 7 about here.]

Table 7 considers the predictive aspects of the latent classes.

It shows the estimated probabilities for the four categories of the

ultimate outcome u given latent class membership for the extended

Muthén-Roy model. Subjects in the low class have a high probability

of ending up in the follow-up category corresponding to remission.

Subjects in the high class are likely to be moved to the next level with

treatment by other antidepressants, but have a sizable probability of

exiting the study. Subjects in the U-shaped class are likely to be

moved to follow-up but also have a sizable probability of exiting the

study. The high percentage (62%) moved to follow-up in this class

of rapid but transient improvement points to a problem of counting

these individuals as remitters.

Conclusions

It is of interest to see if the growth mixture model results under MAR

are trustworthy given that missingness may be NMAR. Applying

a series of NMAR models in a sensitivity analysis provides useful

information regarding this question. On the whole, the MAR mixture
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model results, the Muthén-Roy mixture model results, and the

mixture Diggle-Kenward selection model results for the STAR*D data

have similarities in terms of trajectory shapes. The models do differ,

however, in the latent trajectory class percentages, which impacts

the assessment of the drug effectiveness. The conventional MAR 4-

class model estimates that 55% of the subjects are in the response

class with 18% in failing classes, whereas the extended Muthén-Roy

model gives the response estimate 32% with 29% in failing classes.

Follow-up analysis using the Level 1 ultimate outcome classification

in the STAR*D trial lends credence to the Muthén-Roy estimate.

Furthermore, the Muthén-Roy finding of a 9% U-shaped class of

subjects who may be prematurely deemed as remitting is of clinical

importance in that it suggests a transient improvement.

The different models have quite different computational demands

in the maximum-likelihood estimation. The MAR mixture model has

rather light computations, the Muthén-Roy model has moderately

heavy computations, and the mixture Diggle-Kenward model has very

heavy computations. The EM computations of the mixture Diggle-

Kenward model involve numerical integration over the unobserved

outcomes which is handled via Monte Carlo integration. Combined

with using many random starting values to avoid local maxima, this

leads to quite slow computations. The Beunckens’ model is lighter

in this regard, given that integration needs to be done only with

respect to the random effects. Scripts for the analyses are available
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at http://www.statmodel.com/examples/penn.shtml#stard using the

Mplus program (Muthén & Muthén, 1998-2009).

The modeling can also be extended in several ways within the

general latent variable framework handled in Mplus. Covariates can

predict the latent class variables as well as random effects within class

and outcomes directly. Outcomes can be binary, ordered polytomous,

censored-normal, and counts. Multilevel data can be handled with

level 2 latent class variables.

[Figure 17 about here.]

In addition to modeling dropout, the general latent variable

framework can also handle modeling of the binary missing data

indicators m so that intermittent missingness is included. For

example, it is possible to apply a two-part (semi-continuous) growth

mixture model extending the work of Olsen and Schafer (2001). The

model can be expressed as two parallel processes, one for the outcomes

and one for the binary missing data indicators. At a given time point,

the outcome is missing or not depending on the missing data indicator.

The two processes have growth models with latent class variables and

random effects that are correlated across the processes. Such a model

is shown in diagram form in Figure 17.

In the current STAR*D example, a large sample size is available for

analysis (n = 4041). Many data sets in psychology are of considerably

smaller size. Fortunately, a large sample size is not a prerequisite

for NMAR analysis. For example, the schizophrenia example in
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Demirtas and Schafer (2003) using n = 437 was successfully re-

analyzed with 2-class pattern-mixture and selection models. It is

likely that smaller samples can also be used as long as the trajectory

classes are sufficiently well separated. To determine the performance

of the analyses, simulation studies can be carried out in Mplus, where

different types of NMAR missing data can be generated.
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(a) Total sample
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(b) Next level
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(c) Follow-up
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(d) Exit study

Figure 1: Sample means of the QIDS depression score at each visit
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Figure 2: Pattern-mixture modeling (d’s are dropout dummy variables)
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Figure 3: Depression mean curves estimated under MAR, pattern-mixture
(PM), and Diggle-Kenward selection modeling (DK)
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Figure 4: Diggle-Kenward selection modeling (d’s are survival indicators)
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Figure 5: 4-class growth mixture model estimated under MAR
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Figure 6: Roy latent class dropout modeling)
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Figure 7: 4-class Roy latent dropout model
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Figure 8: Beunckens mixture model (mixture Wu-Carroll model).
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Figure 9: 4-class Beunckens selection mixture model
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(a) Muthén-Roy pattern-mixture model
(d’s are dropout dummy variables).

 
(b) Diggle-Kenward latent class model
(d’s are dropout survival indicators).

Figure 10: NMAR modeling extensions.
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(a) The class 1, class 5 pair of curves
 

(b) The class 2, class 6 pair of curves

 

(c) The class 3, class 7 pair of curves
 

(d) The class 4, class 8 pair of curves

Figure 11: Muthén-Roy mixture model with 4 trajectory classes and
2 dropout classes (curves marked with triangles correspond to a higher
tendency to drop out)
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Figure 12: 4-class Diggle-Kenward selection mixture model
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Figure 13: Muthén-Roy model extended to include an ultimate outcome
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Figure 14: (a) Estimated means under the MAR model extended to include
an ultimate outcome. (b) Estimated means under the mixture Diggle-
Kenward model extended to include an ultimate outcome.
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Figure 15: Estimated means under the Muthén-Roy model extended to
include an ultimate outcome
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Figure 16: Observed individual trajectories for subjects classified into the
U-shaped class using the extended Muthén-Roy model
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Figure 17: 2-part model for joint growth mixture modeling of missing data
indicators and outcomes
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Table 1: Summary of maximum-likelihood results for growth modeling
assuming MAR and using a conventional 1-class model as well as a growth
mixture model with 2-6 classes

#classes Loglikelihood #par.s BIC

1 -45137 15 90398
2 -44961 19 90081
3 -44922 23 90034
4 -44890 27 90005
5 -44873 31 90004
6 -44852 35 89996
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Table 2: Summary of maximum-likelihood results for pattern-mixture
modeling and Roy latent dropout modeling with 2-5 classes

Model Loglikelihood #par.s BIC

Pattern-mixture -44946 27 90117
Roy 2c -44871 24 89942
Roy 3c -44777 33 89828
Roy 4c -44728 42 89806
Roy 5c -44698 51 89820
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Table 3: Summary of maximum-likelihood results for Beunckens selection
mixture modeling with 1-5 classes

No. classes Loglikelihood #par.s BIC

1 -51534 19 103225
2 -51284 26 102784
3 -51185 33 102644
4 -51130 40 102592
5 -51104 47 102597

Diggle-Kenward -51465 22 103113
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Table 4: Comparing maximum-likelihood results for Roy and Muthén-Roy
mixture models

Model Loglikelihood # par.’s BIC

Roy 4c (1cy, 4cd) -44728 42 89806
Muthén-Roy 2cy, 2cd -44743 30 89736
Muthén-Roy 2cy, 3cd -44702 41 89744
Muthén-Roy 2cy, 4cd -44654 52 89740
Muthén-Roy 3cy, 2cd -44696 37 89699
Muthén-Roy 3cy, 3cd -44647 51 89717
Muthén-Roy 4cy, 2cd -44662 44 89689
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Table 5: Summary of maximum-likelihood results for Diggle-Kenward
selection mixture modeling

Model Loglikelihood #par.s BIC

4-class model 1 -51159 34 102600
4-class model 2 -50983 47 102356
4-class model 3 -50670 76 101971

1-class model -51465 22 103113
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Table 6: Summary of key model-estimated percentages for latent class,
remission, and response

Model High U-shaped Low Remission Response
Class Class Class (≤ 5) (≥ 50% drop)

MAR 4c 15 3 55 34 53
Muthén-Roy 4c, 2c 14 15 32 22 34
Diggle-Kenward 4c 18 6 45 26 45

MAR 1c 27 49
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Table 7: Estimated probabilities for the ultimate outcome given latent class
membership for the extended Muthén-Roy model

Latent class Next level Follow-up Exit Missing

Low 0.00 0.94 0.04 0.02
High 0.63 0.00 0.37 0.00
U 0.09 0.62 0.29 0.00
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