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Series Editor’s Note

Missing data are a real bane to researchers across all social science disciplines. For most of 
our scientifi c history, we have approached missing data much like a doctor from the ancient 
world might use bloodletting to cure disease or amputation to stem infection (e.g, removing 
the infected parts of one’s data by using list-wise or pair-wise deletion). My metaphor should 
make you feel a bit squeamish, just as you should feel if you deal with missing data using 
the antediluvian and ill-advised approaches of old. Fortunately, Craig Enders is a gifted quan-
titative specialist who can clearly explain missing data procedures to diverse readers from 
beginners to seasoned veterans. He brings us into the age of modern missing data treatments 
by demystifying the arcane discussions of missing data mechanisms and their labels (e.g., 
MNAR) and the esoteric acronyms of the various techniques used to address them (e.g., FIML, 
MCMC, and the like).

Enders’s approachable treatise provides a comprehensive treatment of the causes of miss-
ing data and how best to address them. He clarifi es the principles by which various mecha-
nisms of missing data can be recovered, and he provides expert guidance on which method 
to implement and how to execute it, and what to report about the modern approach you 
have chosen. Enders’s deft balancing of practical guidance with expert insight is refreshing 
and enlightening. It is rare to fi nd a book on quantitative methods that you can read for its 
stated purpose (educating the reader about modern missing data procedures) and fi nd that 
it treats you to a level of insight on a topic that whole books dedicated to the topic cannot 
match. For example, Enders’s discussions of maximum likelihood and Bayesian estimation 
procedures are the clearest, most understandable, and instructive discussions I have read—
your inner geek will be delighted, really.

Enders successfully translates the state-of-the art technical missing data literature into 
an accessible reference that you can readily rely on and use. Among the treasures of Enders’s 
work are the pointed simulations that he has developed to show you exactly what the techni-
cal literature obtusely presents. Because he provides such careful guidance of the foundations 
and the step-by-step processes involved, you will quickly master the concepts and issues of 
this critical literature. Another treasure is his use of a common running example that he 
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builds upon as more complex issues are presented. And if these features are not enough, you 
can also visit the accompanying website (www.appliedmissingdata.com), where you will fi nd 
up-to-date program fi les for the examples presented, as well as additional examples of the 
different software programs available for handling missing data. 

What you will learn from this book is that missing data imputation is not cheating. In 
fact, you will learn why the egregious scientifi c error would be the business-as-usual ap-
proaches that still permeate our journals. You will learn that modern missing data procedures 
are so effective that intentionally missing data designs often can provide more valid and gen-
eralizable results than traditional data collection protocols. In addition, you will learn to re-
think how you collect data to maximize your ability to recover any missing data mechanisms 
and that many quandaries of design and analysis become resolvable when recast as a missing 
data problem. Bottom line—after you read this book you will have learned how to go forth 
and impute with impunity! 

TODD D. LITTLE

University of Kansas
Lawrence, Kansas
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An Introduction to Missing Data

1.1 INTRODUCTION

Missing data are ubiquitous throughout the social, behavioral, and medical sciences. For 
decades, researchers have relied on a variety of ad hoc techniques that attempt to “fi x” the 
data by discarding incomplete cases or by fi lling in the missing values. Unfortunately, most 
of these techniques require a relatively strict assumption about the cause of missing data and 
are prone to substantial bias. These methods have increasingly fallen out of favor in the meth-
odological literature (Little & Rubin, 2002; Wilkinson & Task Force on Statistical Inference, 
1999), but they continue to enjoy widespread use in published research articles (Bodner, 
2006; Peugh & Enders, 2004).

Methodologists have been studying missing data problems for nearly a century, but the 
major breakthroughs came in the 1970s with the advent of maximum likelihood estimation 
routines and multiple imputation (Beale & Little, 1975; Dempster, Laird, & Rubin, 1977; 
Rubin, 1978b; Rubin, 1987). At about the same time, Rubin (1976) outlined a theoretical 
framework for missing data problems that remains in widespread use today. Maximum likeli-
hood and multiple imputation have received considerable attention in the methodological 
literature during the past 30 years, and researchers generally regard these approaches as the 
current “state of the art” (Schafer & Graham, 2002). Relative to traditional approaches, maxi-
mum likelihood and multiple imputation are theoretically appealing because they require 
weaker assumptions about the cause of missing data. From a practical standpoint, this means 
that these techniques will produce parameter estimates with less bias and greater power.

Researchers have been relatively slow to adopt maximum likelihood and multiple impu-
tation and still rely heavily on traditional missing data handling techniques (Bodner, 2006; 
Peugh & Enders, 2004). In part, this hesitancy may be due to a lack of software options, as 
maximum likelihood and multiple imputation did not become widely available in statistical 
packages until the late 1990s. However, the technical nature of the missing data literature 
probably represents another signifi cant barrier to the widespread adoption of these techniques. 
Consequently, the primary goal of this book is to provide an accessible and user-friendly 
introduction to missing data analyses, with a special emphasis on maximum likelihood and 
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2 APPLIED MISSING DATA ANALYSIS

multiple imputation. It is my hope that this book will help address the gap that currently 
exists between the analytic approaches that methodologists recommend and those that ap-
pear in published research articles.

1.2 CHAPTER OVERVIEW

This chapter describes some of the fundamental concepts that appear repeatedly throughout 
the book. In particular, the fi rst half of the chapter is devoted to missing data theory, as de-
scribed by Rubin (1976) and colleagues (Little & Rubin, 2002). Rubin is responsible for es-
tablishing a nearly universal classifi cation system for missing data problems. These so-called 
missing data mechanisms describe relationships between measured variables and the prob-
ability of missing data and essentially function as assumptions for missing data analyses. 
Rubin’s mechanisms serve as a vital foundation for the remainder of the book because they 
provide a basis for understanding why different missing data techniques succeed or fail.

The second half of this chapter introduces the idea of planned missing data. Researchers 
tend to believe that missing data are a nuisance to be avoided whenever possible. It is true 
that unplanned missing data are potentially damaging to the validity of a statistical analysis. 
However, Rubin’s (1976) theory describes situations where missing data are relatively be-
nign. Researchers have exploited this fact and have developed research designs that produce 
missing data as an intentional by-product of data collection. The idea of intentional missing 
data might seem odd at fi rst, but these research designs actually solve a number of practical 
problems (e.g., reducing respondent burden and reducing the cost of data collection). When 
used in conjunction with maximum likelihood and multiple imputation, these planned miss-
ing data designs provide a powerful tool for streamlining and reducing the cost of data 
collection.

I use the small data set in Table 1.1 to illustrate ideas throughout this chapter. I designed 
these data to mimic an employee selection scenario in which prospective employees com-
plete an IQ test and a psychological well-being questionnaire during their interview. The 
company subsequently hires the applicants who score in the upper half of the IQ distribu-
tion, and a supervisor rates their job performance following a 6-month probationary period. 
Note that the job performance scores are systematically missing as a function of IQ scores 
(i.e., individuals in the lower half of the IQ distribution were never hired, and thus have no 
performance rating). In addition, I randomly deleted three of the well-being scores in order 
to mimic a situation where the applicant’s well-being questionnaire is inadvertently lost.

1.3 MISSING DATA PATTERNS

As a starting point, it is useful to distinguish between missing data patterns and missing data 
mechanisms. These terms actually have very different meanings, but researchers sometimes 
use them interchangeably. A missing data pattern refers to the confi guration of observed and 
missing values in a data set, whereas missing data mechanisms describe possible relation-
ships between measured variables and the probability of missing data. Note that a missing 
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 An Introduction to Missing Data 3

data pattern simply describes the location of the “holes” in the data and does not explain 
why the data are missing. Although the missing data mechanisms do not offer a causal expla-
nation for the missing data, they do represent generic mathematical relationships between 
the data and missingness (e.g., in a survey design, there may be a systematic relationship 
between education level and the propensity for missing data). Missing data mechanisms play 
a vital role in Rubin’s missing data theory.

Figure 1.1 shows six prototypical missing data patterns that you may encounter in the 
missing data literature, with the shaded areas representing the location of the missing values 
in the data set. The univariate pattern in panel A has missing values isolated to a single vari-
able. A univariate pattern is relatively rare in some disciplines but can arise in experimental 
studies. For example, suppose that Y1 through Y3 are manipulated variables (e.g., between-
subjects factors in an ANOVA design) and Y4 is the incomplete outcome variable. The uni-
variate pattern is one of the earliest missing data problems to receive attention in the statis-
tics literature, and a number of classic articles are devoted to this topic.

Panel B shows a confi guration of missing values known as a unit nonresponse pattern. 
This pattern often occurs in survey research, where Y1 and Y2 are characteristics that are avail-
able for every member of the sampling frame (e.g., census tract data), and Y3 and Y4 are sur-
veys that some respondents refuse to answer. Later in the book I describe a planned missing 
data design that yields a similar pattern of missing data. In the context of planned missing-
ness, this pattern can arise when a researcher administers two inexpensive measures to the 
entire sample (e.g., Y1 and Y2) and collects two expensive measures (e.g., Y3 and Y4) from a 
subset of cases.

TABLE 1.1. Employee Selection Data Set

 Psychological Job
IQ well-being performance

 78 13 —
 84  9 —
 84 10 —
 85 10 —
 87 — —
 91  3 —
 92 12 —
 94  3 —
 94 13 —
 96 — —
 99  6  7
105 12 10
105 14 11
106 10 15
108 — 10
112 10 10
113 14 12
115 14 14
118 12 16
134 11 12
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A monotone missing data pattern in panel C is typically associated with a longitudinal 
study where participants drop out and never return (the literature sometimes refers to this as 
attrition). For example, consider a clinical trial for a new medication in which participants 
quit the study because they are having adverse reactions to the drug. Visually, the monotone 
pattern resembles a staircase, such that the cases with missing data on a particular assess-
ment are always missing subsequent measurements. Monotone missing data patterns have 
received attention in the missing data literature because they greatly reduce the mathematical 
complexity of maximum likelihood and multiple imputation and can eliminate the need for 
iterative estimation algorithms (Schafer, 1997, pp. 218–238).

A general missing data pattern is perhaps the most common confi guration of missing 
values. As seen in panel D, a general pattern has missing values dispersed throughout the data 
matrix in a haphazard fashion. The seemingly random pattern is deceptive because the values 

(A) Univariate Pattern (B) Unit Nonresponse Pattern

(C) Monotone Pattern (D) General Pattern

(E) Planned Missing Pattern (F) Latent Variable Pattern

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4 ξ Y2 Y3 Y4

FIGURE 1.1. Six prototypical missing data patterns. The shaded areas represent the location of the 
missing values in the data set with four variables.
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 An Introduction to Missing Data 5

can still be systematically missing (e.g., there may be a relationship between Y1 values and 
the propensity for missing data on Y2). Again, it is important to remember that the missing 
data pattern describes the location of the missing values and not the reasons for missingness. 
The data set in Table 1.1 is another example of a general missing data pattern, and you can 
further separate this general pattern into four unique missing data patterns: cases with only 
IQ scores (n = 2), cases with IQ and well-being scores (n = 8), cases with IQ and job perfor-
mance scores (n = 1), and cases with complete data on all three variables (n = 9).

Later in the chapter, I outline a number of designs that produce intentional missing 
data. The planned missing data pattern in panel E corresponds to the three-form question-
naire design outlined by Graham, Hofer, and MacKinnon (1996). The basic idea behind the 
three-form design is to distribute questionnaires across different forms and administer a 
subset of the forms to each respondent. For example, the design in panel E distributes the 
four questionnaires across three forms, such that each form includes Y1 but is missing Y2, Y3, 
or Y4. Planned missing data patterns are useful for collecting a large number of questionnaire 
items while simultaneously reducing respondent burden.

Finally, the latent variable pattern in panel F is unique to latent variable analyses such 
as structural equation models. This pattern is interesting because the values of the latent 
variables are missing for the entire sample. For example, a confi rmatory factor analysis model 
uses a latent factor to explain the associations among a set of manifest indicator variables 
(e.g., Y1 through Y3), but the factor scores themselves are completely missing. Although it is 
not necessary to view latent variable models as missing data problems, researchers have 
adapted missing data algorithms to estimate these models (e.g., multilevel models; Rauden-
bush & Bryk, 2002, pp. 440–444).

Historically, researchers have developed analytic techniques that address a particular 
missing data pattern. For example, Little and Rubin (2002) devote an entire chapter to older 
methods that were developed specifi cally for experimental studies with a univariate missing 
data pattern. Similarly, survey researchers have developed so-called hot-deck approaches to 
deal with unit nonresponse (Scheuren, 2005). From a practical standpoint, distinguishing 
among missing data patterns is no longer that important because maximum likelihood esti-
mation and multiple imputation are well suited for virtually any missing data pattern. This 
book focuses primarily on techniques that are applicable to general missing data patterns 
because these methods also work well with less complicated patterns.

1.4 A CONCEPTUAL OVERVIEW OF MISSING DATA THEORY

Rubin (1976) and colleagues introduced a classifi cation system for missing data problems 
that is widely used in the literature today. This work has generated three so-called missing 
data mechanisms that describe how the probability of a missing value relates to the data, if 
at all. Unfortunately, Rubin’s now-standard terminology is somewhat confusing, and re-
searchers often misuse his vernacular. This section gives a conceptual overview of missing 
data theory that uses hypothetical research examples to illustrate Rubin’s missing data mech-
anisms. In the next section, I delve into more detail and provide a more precise mathemati-
cal defi nition of the missing data mechanisms. Methodologists have proposed additions to 
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6 APPLIED MISSING DATA ANALYSIS

Rubin’s classifi cation scheme (e.g., Diggle & Kenward, 1994; Little, 1995), but I focus strictly 
on the three missing data mechanisms that are common in the literature. As an aside, I try to 
use a minimal number of acronyms throughout the book, but I nearly always refer to the miss-
ing data mechanisms by their abbreviation (MAR, MCAR, MNAR). You will encounter these 
acronyms repeatedly throughout the book, so it is worth committing them to memory.

Missing at Random Data

Data are missing at random (MAR) when the probability of missing data on a variable Y is 
related to some other measured variable (or variables) in the analysis model but not to the 
values of Y itself. Said differently, there is no relationship between the propensity for missing 
data on Y and the values of Y after partialling out other variables. The term missing at random 
is somewhat misleading because it implies that the data are missing in a haphazard fashion 
that resembles a coin toss. However, MAR actually means that a systematic relationship exists 
between one or more measured variables and the probability of missing data. To illustrate, 
consider the small data set in Table 1.2. I designed these data to mimic an employee selection 
scenario in which prospective employees complete an IQ test during their job interview and 
a supervisor subsequently evaluates their job performance following a 6-month probationary 
period. Suppose that the company used IQ scores as a selection measure and did not hire 
applicants that scored in the lower quartile of the IQ distribution. You can see that the job 
performance ratings in the MAR column of Table 1.2 are missing for the applicants with the 
lowest IQ scores. Consequently, the probability of a missing job performance rating is solely 
a function of IQ scores and is unrelated to an individual’s job performance.

There are many real-life situations in which a selection measure such as IQ determines 
whether data are missing, but it is easy to generate additional examples where the propensity 
for missing data is less deterministic. For example, suppose that an educational researcher is 
studying reading achievement and fi nds that Hispanic students have a higher rate of missing 
data than Caucasian students. As a second example, suppose that a psychologist is studying 
quality of life in a group of cancer patients and fi nds that elderly patients and patients with 
less education have a higher propensity to refuse the quality of life questionnaire. These ex-
amples qualify as MAR as long as there is no residual relationship between the propensity for 
missing data and the incomplete outcome variable (e.g., after partialling out age and educa-
tion, the probability of missingness is unrelated to quality of life).

The practical problem with the MAR mechanism is that there is no way to confi rm that 
the probability of missing data on Y is solely a function of other measured variables. Return-
ing to the education example, suppose that Hispanic children with poor reading skills have 
higher rates of missingness on the reading achievement test. This situation is inconsistent 
with an MAR mechanism because there is a relationship between reading achievement and 
missingness, even after controlling for ethnicity. However, the researcher would have no way 
of verifying the presence or absence of this relationship without knowing the values of the 
missing achievement scores. Consequently, there is no way to test the MAR mechanism or to 
verify that scores are MAR. This represents an important practical problem for missing data 
analyses because maximum likelihood estimation and multiple imputation (the two tech-
niques that methodologists currently recommend) assume an MAR mechanism.
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 An Introduction to Missing Data 7

Missing Completely at Random Data

The missing completely at random (MCAR) mechanism is what researchers think of as 
purely haphazard missingness. The formal defi nition of MCAR requires that the probability 
of missing data on a variable Y is unrelated to other measured variables and is unrelated to 
the values of Y itself. Put differently, the observed data points are a simple random sample of 
the scores you would have analyzed had the data been complete. Notice that MCAR is a more 
restrictive condition than MAR because it assumes that missingness is completely unrelated 
to the data.

With regard to the job performance data in Table 1.2, I created the MCAR column by 
deleting scores based on the value of a random number. The random numbers were uncor-
related with IQ and job performance, so missingness is unrelated to the data. You can see 
that the missing values are not isolated to a particular location in the IQ and job performance 
distributions; thus the 15 complete cases are relatively representative of the entire applicant 
pool. It is easy to think of real-world situations where job performance ratings could be miss-
ing in a haphazard fashion. For example, an employee might take maternity leave prior to her 
6-month evaluation, the supervisor responsible for assigning the rating could be promoted to 
another division within the company, or an employee might quit because his spouse ac-
cepted a job in another state. Returning to the previous education example, note that children 
could have MCAR achievement scores because of unexpected personal events (e.g., an ill-
ness, a funeral, family vacation, relocation to another school district), scheduling diffi culties 

TABLE 1.2. Job Performance Ratings with MCAR, MAR, 
and MNAR Missing Values

 Job performance ratings

IQ Complete MCAR MAR MNAR

 78  9 — —  9
 84 13 13 — 13
 84 10 — — 10
 85  8  8 — —
 87  7  7 — —
 91  7  7  7 —
 92  9  9  9  9
 94  9  9  9  9
 94 11 11 11 11
 96  7 —  7 —
 99  7  7  7 —
105 10 10 10 10
105 11 11 11 11
106 15 15 15 15
108 10 10 10 10
112 10 — 10 10
113 12 12 12 12
115 14 14 14 14
118 16 16 16 16
134 12 — 12 12
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(e.g., the class was away at a fi eld trip when the researchers visited the school), or administra-
tive snafus (e.g., the researchers inadvertently misplaced the tests before the data could be 
entered). Similar types of issues could produce MCAR data in the quality of life study.

In principle, it is possible to verify that a set of scores are MCAR. I outline two MCAR 
tests in detail later in the chapter, but the basic logic behind these tests will be introduced 
here. For example, reconsider the data in Table 1.2. The defi nition of MCAR requires that the 
observed data are a simple random sample of the hypothetically complete data set. This im-
plies that the cases with observed job performance ratings should be no different from the 
cases that are missing their performance evaluations, on average. To test this idea, you can 
separate the missing and complete cases and examine group mean differences on the IQ vari-
able. If the missing data patterns are randomly equivalent (i.e., the data are MCAR), then the 
IQ means should be the same, within sampling error. To illustrate, I classifi ed the scores in 
the MCAR column as observed or missing and compared the IQ means for the two groups. 
The complete cases have an IQ mean of 99.73, and the missing cases have a mean of 100.80. 
This rather small mean difference suggests that the two groups are randomly equivalent, and 
it provides evidence that the job performance scores are MCAR. As a contrast, I used the 
performance ratings in the MAR column to form missing data groups. The complete cases 
now have an IQ mean of 105.47, and the missing cases have a mean of 83.60. This large 
disparity suggests that the two groups are systematically different on the IQ variable, so there 
is evidence against the MCAR mechanism. Comparing the missing and complete cases is a 
strategy that is common to the MCAR tests that I describe later in the chapter.

Missing Not at Random Data

Finally, data are missing not at random (MNAR) when the probability of missing data on a 
variable Y is related to the values of Y itself, even after controlling for other variables. To il-
lustrate, reconsider the job performance data in Table 1.2. Suppose that the company hired 
all 20 applicants and subsequently terminated a number of individuals for poor performance 
prior to their 6-month evaluation. You can see that the job performance ratings in the MNAR 
column are missing for the applicants with the lowest job performance ratings. Consequently, 
the probability of a missing job performance rating is dependent on one’s job performance, 
even after controlling for IQ.

It is relatively easy to generate additional examples where MNAR data could occur. Re-
turning to the previous education example, suppose that students with poor reading skills 
have missing test scores because they experienced reading comprehension diffi culties during 
the exam. Similarly, suppose that a number of patients in the cancer trial become so ill (e.g., 
their quality of life becomes so poor) that they can no longer participate in the study. In both 
examples, the data are MNAR because the probability of a missing value depends on the vari-
able that is missing. Like the MAR mechanism, there is no way to verify that scores are MNAR 
without knowing the values of the missing variables.
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 An Introduction to Missing Data 9

1.5 A MORE FORMAL DESCRIPTION OF MISSING DATA THEORY

The previous section is conceptual in nature and omits the mathematical details behind Ru-
bin’s missing data theory. This section expands the previous ideas and gives a more precise 
description of the missing data mechanisms. As an aside, the notation and the terminology 
that I use in this section are somewhat different from Rubin’s original work, but they are 
consistent with the contemporary missing data literature (Little & Rubin, 2002; Schafer, 
1997; Schafer & Graham, 2002).

Preliminary Notation

Understanding Rubin’s (1976) missing data theory requires some basic notation and termi-
nology. The complete data consist of the scores that you would have obtained had there been 
no missing values. The complete data is partially a hypothetical entity because some of its 
values are missing. However, in principle, each case has a score on every variable. This idea 
is intuitive in some situations (e.g., a student’s reading comprehension score is missing be-
cause she was unexpectedly absent from school) but is somewhat unnatural in others (e.g., 
a cancer patient’s quality of life score is missing because he died). Nevertheless, you have to 
assume that a complete set of scores does exist, at least hypothetically. I denote the complete 
data as Ycom throughout the rest of this section.

In practice, some portion of the hypothetically complete data set is often missing. Con-
sequently, you can think of the complete data as consisting of two components, the observed 
data and the missing data (Yobs and Ymis, respectively). As the names imply, Yobs contains the 
observed scores, and Ymis contains the hypothetical scores that are missing. To illustrate, re-
consider the data set in Table 1.2. Suppose that the company used IQ scores as a selection 
measure and did not hire applicants that scored in the lower quartile of the IQ distribution. 
The fi rst two columns of the table contain the hypothetically complete data (i.e., Ycom), and 
the MAR column shows the job performance scores that the human resources offi ce actually 
collected. For a given individual with incomplete data, Yobs corresponds to the IQ variable 
and Ymis is the hypothetical job performance rating. As you will see in the next section, par-
titioning the hypothetically complete data set into its observed and missing components 
plays an integral role in missing data theory.

The Distribution of Missing Data

The key idea behind Rubin’s (1976) theory is that missingness is a variable that has a prob-
ability distribution. Specifi cally, Rubin defi nes a binary variable R that denotes whether a 
score on a particular variable is observed or missing (i.e., r = 1 if a score is observed, and r = 0 
if a value is missing). For example, Table 1.3 shows the MAR job performance ratings and the 
corresponding missing data indicator. A single indicator can summarize the distribution of 
missing data in this example because the IQ variable is complete. However, multivariate data 
sets tend to have a number of missing variables, in which case R becomes a matrix of missing 
data indicators. When every variable has missing values, this R matrix has the same number 
of rows and columns as the data matrix.
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Rubin’s (1976) theory essentially views individuals as having a pair of observations on 
each variable: a score value that may or may not be observed (i.e., Yobs or Ymis) and a corre-
sponding code on the missing data indicator, R. Defi ning the missing data as a variable im-
plies that there is a probability distribution that governs whether R takes on a value of zero 
or one (i.e., there is a function or equation that describes the probability of missingness). For 
example, reconsider the cancer study that I described earlier in the chapter. If the quality of 
life scores are missing as a function of other variables such as age or education, then the coef-
fi cients from a logistic regression equation might describe the distribution of R. In practice, 
we rarely know why the data are missing, so it is impossible to describe the distribution of R 
with any certainty. Nevertheless, the important point is that R has a probability distribution, 
and the probability of missing data may or may not be related to other variables in the data 
set. As you will see, the nature of the relationship between R and the data is what differenti-
ates the missing data mechanisms.

A More Precise Defi nition of the Missing Data Mechanisms

Having established some basic terminology, we can now revisit the missing data mechanisms 
in more detail. The formal defi nitions of the missing data mechanisms involve different prob-
ability distributions for the missing data indicator, R. These distributions essentially describe 
different relationships between R and the data. In practice, there is generally no way to specify 

TABLE 1.3. Missing Data Indicator 
for MAR Job Performance Ratings

 Job performance

Complete MAR Indicator

 9 — 0
13 — 0
10 — 0
 8 — 0
 7 — 0
 7  7 1
 9  9 1
 9  9 1
11 11 1
 7  7 1
 7  7 1
10 10 1
11 11 1
15 15 1
10 10 1
10 10 1
12 12 1
14 14 1
16 16 1
12 12 1
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 An Introduction to Missing Data 11

the parameters of these distributions with any certainty. However, these details are not im-
portant because it is the presence or absence of certain associations that differentiates the 
missing data mechanisms.

The probability distribution for MNAR data is a useful starting point because it includes 
all possible associations between the data and missingness. You can write this distribution as

 p(R|Yobs, Ymis, φ) (1.1)

where p is a generic symbol for a probability distribution, R is the missing data indicator, Yobs 
and Ymis are the observed and missing parts of the data, respectively, and φ is a parameter (or 
set of parameters) that describes the relationship between R and the data. In words, Equation 
1.1 says that the probability that R takes on a value of zero or one can depend on both Yobs 
and Ymis. Said differently, the probability of missing data on Y can depend on other variables 
(i.e., Yobs) as well as on the underlying values of Y itself (i.e., Ymis).

To put Equation 1.1 into context, reconsider the data set in Table 1.2. Equation 1.1 
implies that the probability of missing data is related to an individual’s IQ or job perfor-
mance score (or both). Panel A of Figure 1.2 is a graphical depiction of these relationships 
that I adapted from a similar fi gure in Schafer and Graham (2002). Consistent with Equa-
tion1.1, the fi gure contains all possible associations (i.e., arrows) between R and the data. 
The box labeled Z represents a collection of unmeasured variables (e.g., motivation, health 
problems, turnover intentions, and job satisfaction) that may relate to the probability of 
missing data and to IQ and job performance. Rubin’s (1976) missing data mechanisms are 
only concerned with relationships between R and the data, so there is no need to include Z 
in Equation 1.1. However, correlations between measured and unmeasured variables can 
induce spurious associations between R and Y, which underscores the point that Rubin’s 
mechanisms are not real-world causal descriptions of the missing data.

An MAR mechanism occurs when the probability of missing data on a variable Y is re-
lated to another measured variable in the analysis model but not to the values of Y itself. This 
implies that R is dependent on Yobs but not on Ymis. Consequently, the distribution of missing 
data simplifi es to

 p(R|Yobs, φ) (1.2)

Equation 1.2 says that the probability of missingness depends on the observed portion of 
data via some parameter φ that relates Yobs to R. Returning to the small job performance data 
set, observe that Equation 1.2 implies that an individual’s propensity for missing data de-
pends only on his or her IQ score. Panel B of Figure 1.2 depicts an MAR mechanism. Notice 
that there is no longer an arrow between R and the job performance scores, but a linkage 
remains between R and IQ. The arrow between R and IQ could represent a direct relationship 
between these variables (e.g., the company uses IQ as a selection measure), or it could be a 
spurious relationship that occurs when R and IQ are mutually correlated with one of the 
unmeasured variables in Z. Both explanations satisfy Rubin’s (1976) defi nition of MAR, so 
the underlying causal process is unimportant.
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12 APPLIED MISSING DATA ANALYSIS

Finally, the MCAR mechanism requires that missingness is completely unrelated to the 
data. Consequently, both Yobs and Ymis are unrelated to R, and the distribution of missing data 
simplifi es even further to

 p(R|φ) (1.3)

Equation 1.3 says that some parameter still governs the probability that R takes on a value of 
zero or one, but missingness is no longer related to the data. Returning to the job perfor-
mance data set, note that Equation 1.3 implies that the missing data indicator is unrelated to 
both IQ and job performance. Panel C of Figure 1.2 depicts an MCAR mechanism. In this 
situation, the φ parameter describes possible associations between R and unmeasured vari-
ables, but there are no linkages between R and the data. Although it is not immediately obvi-
ous, panel C implies that the unmeasured variables in Z are uncorrelated with IQ and job 
performance because the presence of such a correlation could induce a spurious association 
between R and Y.

FIGURE 1.2. A graphical representation of Rubin’s missing data mechanisms. The fi gure depicts a 
bivariate scenario in which IQ scores are completely observed and the job performance scores (JP) are 
missing for some individuals. The double-headed arrows represent generic statistical associations and 
φ is a parameter that governs the probability of scoring a 0 or 1 on the missing data indicator, R. The 
box labeled Z represents a collection of unmeasured variables.

(C) MCAR Mechanism

IQ

JP

Z

R

(A) MNAR Mechanism

IQ

JP

Z

R

(B) MAR Mechanism

IQ

JP

Z

R
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 An Introduction to Missing Data 13

1.6 WHY IS THE MISSING DATA MECHANISM IMPORTANT?

Rubin’s (1976) missing data theory involves two sets of parameters: the parameters that ad-
dress the substantive research questions (i.e., the parameters that you would have estimated 
had there been no missing data) and the parameters that describe the probability of missing 
data (i.e., φ). Researchers rarely know why the data are missing, so it is impossible to describe 
φ with any certainty. For example, reconsider the cancer study described in the previous sec-
tion. Quality of life scores could be missing as an additive function of age and education, as 
an interactive function of treatment group membership and baseline health status, or as a 
direct function of quality of life itself. The important point is that there is generally no way to 
determine or estimate the parameters that describe the propensity for missing data.

The parameters that describe the probability of missing data are a nuisance and have no 
substantive value (e.g., had the data been complete, there would be reason to worry about 
φ). However, in some situations these parameters may infl uence the estimation of the sub-
stantive parameters. For example, suppose that the goal of the cancer study is to estimate the 
mean quality of life score. Furthermore, imagine that a number of patients become so ill (i.e., 
their quality of life becomes so poor) that they can no longer participate in the study. In this 
scenario, φ is a set of parameters (e.g., logistic regression coeffi cients) that relates the prob-
ability of missing data to an individual’s quality of life score. At an intuitive level, it would be 
diffi cult to obtain an accurate mean estimate because scores are disproportionately missing 
from the lower tail of the distribution. However, if the researchers happened to know the 
parameter values in φ, it would be possible to correct for the positive bias in the mean. Of 
course, the problem with this scenario is that there is no way to estimate φ.

Rubin’s (1976) work is important because he clarifi ed the conditions that need to exist 
in order to accurately estimate the substantive parameters without also knowing the param-
eters of the missing data distribution (i.e., φ). It ends up that these conditions depend on 
how you analyze the data. Rubin showed that likelihood-based analyses such as maximum 
likelihood estimation and multiple imputation do not require information about φ if the data 
are MCAR or MAR. For this reason, the missing data literature often describes the MAR 
mechanism as ignorable missingness because there is no need to estimate the parameters of 
the missing data distribution when performing analyses. In contrast, Rubin showed that 
analysis techniques that rely on a sampling distribution are valid only when the data are 
MCAR. This latter set of procedures includes most of the ad hoc missing data techniques that 
researchers have been using for decades (e.g., discarding cases with missing data).

From a practical standpoint, Rubin’s (1976) missing data mechanisms are essentially 
assumptions that govern the performance of different analytic techniques. Chapter 2 outlines 
a number of missing data handling methods that have been mainstays in published research 
articles for many years. With few exceptions, these techniques assume an MCAR mechanism 
and will yield biased parameter estimates when the data are MAR or MNAR. Because these 
traditional methods require a restrictive assumption that is unlikely to hold in practice, they 
have increasingly fallen out of favor in recent years (Wilkinson & Task Force on Statistical 
Inference, 1999). In contrast, maximum likelihood estimation and multiple imputation yield 
unbiased parameter estimates with MCAR or MAR data. In some sense, maximum likelihood 
and multiple imputation are robust missing data handling procedures because they require 
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14 APPLIED MISSING DATA ANALYSIS

less stringent assumptions about the missing data mechanism. However, these methods are 
not a perfect solution because they too will produce bias with MNAR data. Methodologists 
have developed analysis methods for MNAR data, but these approaches require strict assump-
tions that limit their practical utility. Chapter 10 outlines models for MNAR data and shows 
how to use these models to conduct sensitivity analyses.

1.7 HOW PLAUSIBLE IS THE MISSING AT RANDOM MECHANISM?

The methodological literature recommends maximum likelihood and multiple imputation 
because these approaches require the less stringent MAR assumption. It is reasonable to 
question whether this assumption is plausible, given that there is no way to test it. Later in 
the chapter, I describe a number of planned missing data designs that automatically produce 
MAR or MCAR data, but these situations are unique because missingness is under the re-
searcher’s control. In the vast majority of studies, missing values are an unintentional by-
product of data collection, so the MAR mechanism becomes an unverifi able assumption that 
infl uences the accuracy of the maximum likelihood and multiple imputation analyses.

As is true for most statistical assumptions, it seems safe to assume that the MAR as-
sumption will not be completely satisfi ed. The important question is whether routine viola-
tions are actually problematic. The answer to this question is situation-dependent because 
not all violations of MAR are equally damaging. To illustrate, reconsider the job performance 
scenario I introduced earlier in the chapter. The defi nition of MNAR states that a relationship 
exists between the probability of missing data on Y and the values of Y itself. This association 
can occur for two reasons. First, it is possible that the probability of missing data is directly 
related to the incomplete outcome variable. For example, if the company terminates a num-
ber of individuals for poor performance prior to their 6-month evaluation, then there is a 
direct relationship between job performance and the propensity for missing data. However, 
an association between job performance and missingness can also occur because these vari-
ables are mutually correlated with an unmeasured variable. For example, suppose that indi-
viduals with low autonomy (an unmeasured variable) become frustrated and quit prior to 
their six-month evaluation. If low autonomy is also associated with poor job performance, 
then this unmeasured variable can induce a correlation between performance and missing-
ness, such that individuals with poor job performance have a higher probability of missing 
their six-month evaluation.

Figure 1.3 is a graphical depiction of the previous scenarios. Note that I use a straight 
arrow to specify a causal infl uence and a double-headed arrow to denote a generic associa-
tion. Although both diagrams are consistent with Rubin’s (1976) defi nition of MNAR, they 
are not equally capable of introducing bias. Collins, Schafer, and Kam (2001) showed that a 
direct relationship between the outcome and missingness (i.e., panel A) can introduce sub-
stantial bias, whereas MNAR data that results from an unmeasured variable is problematic 
only when correlation between the unmeasured variable and the missing outcome is rela-
tively strong (e.g., greater than .40). The situation in panel B seems even less severe when 
you consider that the IQ variable probably captures some of the variation that autonomy 
would have explained, had it been a measured variable that was included in the statistical 
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analysis. This means that an unmeasured cause of missingness is problematic only if it has a 
strong relationship with the missing outcome after partialling out other measured variables. 
Schafer and Graham (2002, p. 173) argue that this is unlikely in most situations.

Notice that the MNAR mechanism in Panel B of Figure 1.3 becomes an MAR mechanism 
if autonomy is a measured variable that is included in the statistical analysis (i.e., the spuri-
ous correlation between job performance and R disappears once autonomy is partialled out). 
This suggests that you should be proactive about satisfying the MAR assumption by measur-
ing variables that might explain missingness. For example, Graham, Taylor, Olchowski, and 
Cumsille (2006) suggest that variables such as reading speed and conscientiousness might 
explain why some respondents leave questionnaire items blank. In a longitudinal study, 
Schafer and Graham (2002) recommend using a survey question that asks respondents to 
report their likelihood of dropping out of the study prior to the next measurement occasion. 
As noted by Schafer and Graham (2002, p. 173), collecting data on the potential causes of 
missingness “may effectively convert an MNAR situation to MAR,” so you should strongly 
consider this strategy when designing a study.

Of course, not all MNAR data are a result of unmeasured variables. In truth, the likeli-
hood of the two scenarios in Figure 1.3 probably varies across research contexts. There is 
often a tendency to assume that data are missing for rather sinister reasons (e.g., a participant 
in a drug cessation study drops out, presumably because she started using again), and this 
presumption may be warranted in certain situations. For example, Hedeker and Gibbons 
(1997) describe data from a psychiatric clinical trial in which dropout was likely a function 
of response to treatment (e.g., participants in the placebo group were likely to leave the study 
because their symptoms were not improving, whereas dropouts in a drug condition experi-
enced rapid improvement prior to dropping out). Similarly, Foster and Fang (2004) describe 
an evaluation of a conduct disorder intervention in which highly aggressive boys were less 
likely to continue participating in the study. However, you should not discount the possibil-
ity that a substantial proportion of the missing observations are MAR or even MCAR. For 

FIGURE 1.3. A graphical representation of two causal processes that produce MNAR data. The 
fi gure depicts a bivariate scenario in which IQ scores are completely observed and the job performance 
scores (JP) are missing for some individuals. The double-headed arrows represent generic statistical 
associations, and the straight arrows specify a causal infl uences. Panel A corresponds to a situation in 
which the probability of missing data is directly related to the missing outcome variable (i.e., the straight 
arrow between JP and R). Panel B depicts a scenario in which the probability of missing data is indi-
rectly related to the missing outcome variable via the unmeasured cause of missingness in box Z.

(A) Direct MNAR Mechanism

IQ

JP

Z

R

(B) Indirect MNAR Mechanism

IQ

JP
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16 APPLIED MISSING DATA ANALYSIS

example, Graham, Hofer, Donaldson, MacKinnon, and Schafer (1997) and Enders, Dietz, 
Montague, and Dixon (2006) describe longitudinal studies that made systematic attempts to 
document the reasons for missing data. These studies had a substantial proportion of un-
planned missing data, yet intensive follow-up analyses suggested that the missing data were 
largely benign (e.g., the most common reason for missing data was that students moved out 
of the school where the study took place).

Some researchers have argued that serious violations of MAR are relatively rare (Graham 
et al., 1997, p. 354; Schafer & Graham, 2002, p. 152), but the only way to evaluate the MAR 
assumption is to collect follow-up data from the missing respondents. Of course, this is dif-
fi cult or impossible in many situations. Sensitivity analyses are also useful for assessing the 
potential impact of MNAR data. Graham et al. (1997, pp. 354–358) provide a good illustra-
tion of a sensitivity analysis; I discuss these procedures in Chapter 10.

1.8 AN INCLUSIVE ANALYSIS STRATEGY

The preceding section is overly simplistic because it suggests that the MAR assumption is 
automatically satisfi ed when the “cause” of missingness is a measured variable. In truth, the 
MAR mechanism is a characteristic of a specifi c analysis rather than a global characteristic of 
a data set. That is, some analyses from a given data set may satisfy the MAR assumption, 
whereas others are consistent with an MCAR or MNAR mechanism. To illustrate the subtle-
ties of the MAR mechanism, consider a study that examines a number of health-related be-
haviors (e.g., smoking, drinking, and sexual activity) in a teenage population. Because of its 
sensitive nature, researchers decide to administer the sexual behavior questionnaire to partici-
pants who are above the age of 15. At fi rst glance, this study may appear to satisfy the MAR 
assumption because a measured variable determines whether data are missing. However, this 
is not necessarily true.

Technically, MAR is satisfi ed only if the researchers incorporate age into the missing data 
handling procedure. For example, suppose that the researchers use a simple regression model 
to examine the infl uence of self-esteem on risky sexual behavior. Many software packages that 
implement maximum likelihood missing data handling methods can estimate a regression 
model with missing data, so this is a relatively straightforward analysis. However, the regres-
sion analysis is actually consistent with the MNAR mechanism and may produce biased pa-
rameter estimates, particularly if age and sexual activity are correlated. To understand the 
problem, consider Figure 1.4. This fi gure depicts an indirect MNAR mechanism that is simi-
lar to the one in Panel B of Figure 1.3. Age is not part of the regression model, so it effectively 
operates an unmeasured variable and induces an association between missingness and the 
sexual behavior scores; the fi gure denotes this spurious correlation as a dashed line. The bias 
that results from omitting age from the regression model may not be problematic and de-
pends on the correlation between age and sexual activity. Nevertheless, the regression analy-
sis violates the MAR assumption.

The challenge of satisfying the MAR assumption has prompted methodologists to rec-
ommend a so-called inclusive analysis strategy that incorporates a number of auxiliary 
variables into the analysis model or into the imputation process (Collins, Schafer, & Kam, 
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2001; Rubin, 1996; Schafer, 1997; Schafer & Graham, 2002). Auxiliary variables are vari-
ables you include in an analysis because they are either correlates of missingness or correlates 
of an incomplete variable. Auxiliary variables are not necessarily of substantive interest (i.e., 
you would not have included these variables in the analysis, had the data been complete), so 
their primary purpose is to fi ne-tune the missing data analysis by increasing power or reduc-
ing nonresponse bias. In the health study, age is an important auxiliary variable because it is 
a determinant of missingness, but other auxiliary variables may be correlates of the missing 
sexual behavior scores. For example, a survey question that asks teenagers to report whether 
they have a steady boyfriend or girlfriend is a good auxiliary variable because of its correlation 
with sexual activity. Theory and past research can help identify auxiliary variables, as can the 
MCAR tests described later in the chapter. Incorporating auxiliary variables into the missing 
data handling procedure does not guarantee that you will satisfy the MAR assumption, but it 
certainly improves the chances of doing so. I discuss auxiliary variables in detail in Chapter 5.

1.9 TESTING THE MISSING COMPLETELY AT RANDOM MECHANISM

MCAR is the only missing data mechanism that yields testable propositions. You might ques-
tion the utility of testing this mechanism given that the majority of this book is devoted to 
techniques that require the less stringent MAR assumption. In truth, testing whether an en-
tire collection of variables is consistent with MCAR is probably not that useful because some 
of the variables in a data set are likely to be missing in a systematic fashion. Furthermore, 
fi nding evidence for or against MCAR does not change the recommendation to use maxi-
mum likelihood or multiple imputation. However, identifying individual variables that are not 
MCAR is potentially useful because there may be a relationship between these variables and 
the probability of missingness. As I explained previously, methodologists recommend incor-
porating correlates of missingness into the missing data handling procedure because doing so 
can mitigate bias and improve the chances of satisfying the MAR assumption (Collins et al., 
2001; Rubin, 1996; Schafer, 1997; Schafer & Graham, 2002).

Esteem Age

Sex R

FIGURE 1.4. A graphical representation of an indirect MNAR mechanism. The fi gure depicts a bi-
variate scenario in which self-esteem scores are completely observed and sexual behavior questionnaire 
items are missing for respondents who are less than 15 years of age. If age (the “cause” of missingness) 
is excluded from the analysis model, it effectively acts as an unmeasured variable and induces an as-
sociation between the probability of missing data and the unobserved sexual activity scores. The dashed 
line represents this spurious correlation. Including age in the analysis model (e.g., as an auxiliary vari-
able) converts an MNAR analysis into an MAR analysis.
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18 APPLIED MISSING DATA ANALYSIS

To illustrate how you might use the information from an MCAR test, suppose that a 
psychologist is studying quality of life in a group of cancer patients and fi nds that patients 
who refused the quality of life questionnaire have a higher average age and a lower average 
education than the patients who completed the survey. These mean differences provide com-
pelling evidence that the data are not MCAR and suggest a possible relationship between the 
demographic variables and the probability of missing data. Incorporating the demographic 
characteristics into the missing data handling procedure (e.g., using the auxiliary variable 
procedures in Chapter 5) adjusts for age- and education-related bias in the quality of life 
scores and increases the chances of satisfying the MAR assumption. Consequently, using 
MCAR tests to identify potential correlates of missingness is often a useful starting point, 
even if you have no interest in assessing whether an entire set of variables is MCAR.

Rubin’s (1976) defi nition of MCAR requires that the observed data are a simple random 
sample of the hypothetically complete data set. This implies that the cases with missing data 
belong to the same population (and thus share the same mean vector and covariance matrix) 
as the cases with complete data. Kim and Bentler (2002) refer to this condition as homoge-
neity of means and covariances. One way to test for homogeneity of means is to separate the 
missing and the complete cases on a particular variable and examine group mean differences 
on other variables in the data set. Testing for homogeneity of covariances follows a similar 
logic and examines whether the missing data subgroups have different variances and covari-
ances. Finding that the missing data patterns share a common mean vector and a common 
covariance matrix provides evidence that the data are MCAR, whereas group differences in 
the means or the covariances provide evidence that the data are not MCAR.

Methodologists have proposed a number of methods for testing the MCAR mechanism 
(Chen & Little, 1999; Diggle, 1989; Dixon, 1988; Kim & Bentler, 2002; Little, 1988; Muthén, 
Kaplan, & Hollis, 1987; Park & Lee, 1997; Thoemmes & Enders, 2007). This section de-
scribes two procedures that evaluate mean differences across missing data patterns. I omit 
procedures that assess homogeneity of covariances because it seems unlikely that covariance 
differences would exist in the absence of mean differences. In addition, simulation studies 
offer confl icting evidence about the performance of covariance-based tests (Kim & Bentler, 
2002; Thoemmes & Enders, 2007). It therefore seems safe to view these procedures with 
caution until further research accumulates. Interested readers can consult Kim and Bentler 
(2002) for an overview of covariance-based tests.

Univariate t-Test Comparisons

The simplest method for assessing MCAR is to use a series of independent t tests to compare 
missing data subgroups (Dixon, 1988). This approach separates the missing and the com-
plete cases on a particular variable and uses a t test to examine group mean differences on 
other variables in the data set. The MCAR mechanism implies that the cases with observed 
data should be the same as the cases with missing values, on average. Consequently, a non-
signifi cant t test provides evidence that the data are MCAR, whereas a signifi cant t statistic 
(or alternatively, a large mean difference) suggests that the data are MAR or MNAR.

To illustrate the t-test approach, reconsider the data in Table 1.1. To begin, I used the job 
performance scores to create a binary missing data indicator and subsequently used indepen-
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dent t tests to assess group mean differences on IQ and psychological well-being. The miss-
ing and complete cases have IQ means of 88.50 and 111.50, respectively, and Welch’s t test 
indicated that this mean difference is statistically signifi cant, t(14.68) = 6.43, p < .001. Con-
sidering psychological well-being, the means for the missing and complete cases are 9.13 and 
11.44, respectively, and the t test was not signifi cant, t(11.70) = 1.39, p = .19. Collectively, 
these tests suggest that the job performance ratings are not MCAR because the missing and 
observed cases systematically differ with respect to IQ. This conclusion is correct because I 
deleted job performance scores for the cases in the lower half of the IQ distribution. Next, I 
repeated this procedure by forming a missing data indicator from the psychological well-
being scores and by testing whether the resulting groups had different IQ means (it was im-
possible to compare the job performance means because only one case from the missing data 
group had a job performance score). The t test indicated that the group means are equivalent, 
t(3.60) = .50, p = .65, which correctly provides support for the MCAR mechanism.

The t-test approach has a number of potential problems to consider. First, generating the 
test statistics can be very cumbersome unless you have a software package that automates 
the process (e.g., the SPSS Missing Values Analysis module). Second, the tests do not take 
the correlations among the variables into account, so it is possible for a missing data indica-
tor to produce mean differences on a number of variables, even if there is only a single cause 
of missingness in the data. Related to the previous points, the potential for a large number 
of statistical tests and the possibility of spurious associations seem to warrant some form of 
type I error control. The main reason for implementing the t-test approach is to identify aux-
iliary variables that you can later adjust for in the missing data handling procedure. I would 
argue against any type of error control procedure because there is ultimately no harm in using 
auxiliary variables that are unrelated to missingness (Collins et al., 2001). Another problem 
with the t-test approach is the possibility of very small group sizes (e.g., there are only three 
cases in Table 1.1 with missing well-being scores). This can decrease power and make it im-
possible to perform certain comparisons. To offset a potential loss of power, it might be useful 
to augment the t tests with a measure of effect size such as Cohen’s (1988) standardized 
mean difference. Finally, it is important to note that mean comparisons do not provide a 
conclusive test of MCAR because MAR and MNAR mechanisms can produce missing data 
subgroups with equal means.

Little’s MCAR Test

Little (1988) proposed a multivariate extension of the t-test approach that simultaneously 
evaluates mean differences on every variable in the data set. Unlike univariate t tests, Little’s 
procedure is a global test of MCAR that applies to the entire data set. Omnibus tests of the 
MCAR mechanism are probably not that useful because they provide no way to identify po-
tential correlates of missingness (i.e., auxiliary variables). Nevertheless, Little’s test is avail-
able in some statistical software packages (e.g., the SPSS Missing Values Analysis module), so 
the procedure warrants a description.

Like the t-test approach, Little’s test evaluates mean differences across subgroups of 
cases that share the same missing data pattern. The test statistic is a weighted sum of the 
standardized differences between the subgroup means and the grand means, as follows:
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 d2 = ∑
J

j=1 
nj(!̂j – !̂j

(ML))T

"̂j
–1(!̂j – !̂j

(ML)) (1.4)

where nj is the number of cases in missing data pattern j, !̂j contains the variable means for 
the cases in missing data pattern j, !̂j

(ML) contains maximum likelihood estimates of the grand 
means, and "̂j is the maximum likelihood estimate of the covariance matrix. The j subscript 
indicates that the number of elements in the parameter matrices vary across missing data 
patterns. The d2 statistic is essentially a weighted sum of J squared z scores. Specifi cally, the 
parentheses contain deviation scores that capture differences between pattern j’s means and 
the corresponding grand means. With MCAR data, the subgroup means should be within 
sampling error of the grand means, so small deviations are consistent with an MCAR mecha-
nism. In matrix algebra, multiplying by the matrix inverse is analogous to division, so the "̂j

–1 
term functions like the denominator of the z score formula by converting the raw deviation 
values to a standardized metric. Finally, multiplying the squared z values by nj weights each 
pattern’s contribution to the test statistic. When the null hypothesis is true (i.e., the data are 
MCAR), d2 is approximately distributed as a chi-square statistic with Σkj– k degrees of free-
dom, where kj is the number of complete variables for pattern j, and k is the total number of 
variables. Consistent with the univariate t-test approach, a signifi cant d2 statistic provides evi-
dence against MCAR.

To illustrate Little’s MCAR test, reconsider the small data set in Table 1.1. The data con-
tain four missing data patterns: cases with only IQ scores (nj = 2), cases with IQ and well-
being scores (nj = 8), cases with IQ and job performance scores (nj = 1), and cases with 
complete data on all three variables (nj = 9). The test statistic in Equation 1.4 compares the 
subgroup means to the maximum likelihood estimates of the grand means. I outline maxi-
mum likelihood missing data handling in Chapter 4, but for now, the necessary parameter 
estimates are as follows:

 µ̂IQ 100.00
 !̂ = [ µ̂JP ] = [ 10.23] µ̂WB 10.27

 σ̂2
IQ σ̂IQ,JP σ̂IQ,WB 189.60 22.31 12.21

 "̂ = [ σ̂JP,IQ   σ̂2
JP  σ̂JP,WB ] = [  22.31 8.68  5.61] σ̂WB,IQ σ̂WB,JP σ̂2

WB 12.21 6.50 11.04

To begin, consider the group of cases with data on only IQ (nj = 2). This pattern has an 
IQ mean of 91.50, so its contribution to the d2 statistic is as follows:

 d2
j = 2(91.50 – 100.00)(189.60–1)(91.50 – 100.00) = 0.762

Next, consider the subgroup of cases with complete data on IQ and well-being (nj = 8). The 
IQ and well-being means for this pattern are 87.75 and 9.13, respectively, and the contribu-
tion to the d2 statistic is

 
d2

j = 8([87.75] – [100.00])T[189.60 12.21]–1([87.75] – [100.00]) = 6.432
 9.13 10.27 12.21 11.04 9.13 10.27



















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In both of the previous examples, notice that !̂j and "̂j contain the maximum likelihood es-
timates that correspond to the observed variables for a particular pattern (i.e., the estimates 
that correspond to the missing variables do not appear in the matrices). Repeating the com-
putations for the remaining missing data patterns and summing the resulting d2

j  values yields 
d2 = 14.63, and referencing the test statistic to a chi-square distribution with 5 degrees of 
freedom returns a probability value of p = .01. The null hypothesis for Little’s test states that 
the data are MCAR, so a statistically signifi cant test statistic provides evidence against the 
MCAR mechanism.

Like the t-test approach, Little’s test has a number of problems to consider. First, the test 
does not identify the specifi c variables that violate MCAR, so it is only useful for testing an 
omnibus hypothesis that is unlikely to hold in the fi rst place. Second, the version of the test 
outlined above assumes that the missing data patterns share a common covariance matrix. 
MAR and MNAR mechanisms can produce missing data patterns with different variances and 
covariances, and the test statistic in Equation 1.4 would not necessarily detect covariance-
based deviations from MCAR. Third, simulation studies suggest that Little’s test suffers from 
low power, particularly when the number of variables that violate MCAR is small, the rela-
tionship between the data and missingness is weak, or the data are MNAR (Thoemmes & 
Enders, 2007). Consequently, the test has a propensity to produce Type II errors and can lead 
to a false sense of security about the missing data mechanism. Finally, mean comparisons do 
not provide a conclusive test of MCAR because MAR and MNAR mechanisms can produce 
missing data subgroups with equal means.

1.10 PLANNED MISSING DATA DESIGNS

The next few sections outline research designs that produce MCAR or MAR data as an inten-
tional by-product of data collection. The idea of intentional missing data might seem odd at 
fi rst, but you may already be familiar with a number of these designs. For example, in a ran-
domized study with two treatment conditions, each individual has a hypothetical score from 
both conditions, but participants only provide a response to their assigned treatment condi-
tion. The unobserved response to the other condition (i.e., the potential outcome or counter-
factual) is MCAR. Viewing randomized experiments as a missing data problem is popular in 
the statistics literature and is a key component of Rubin’s Causal Model (Rubin, 1974, 1978a; 
West & Thoemmes, in press). A fractional factorial design (Montgomery, 1997) is another 
research design that yields MCAR missing data. In a fractional factorial, you purposefully se-
lect a subset of experimental conditions from a full factorial design and randomly assign par-
ticipants to these conditions. A classic example of intentional MAR data occurs in selection 
designs where scores on one variable determine whether respondents provide data on a sec-
ond variable. For example, universities frequently use the Graduate Record Exam (GRE) as a 
selection tool for graduate school admissions, so fi rst-year grade point averages are subse-
quently missing for students who score below some GRE threshold. A related issue arises in 
survey designs where the answer to a screener question dictates a particular skip pattern. Se-
lection problems such as this have received considerable attention in the methodological lit-
erature (Sackett & Yang, 2000) and date back to Pearson’s (1903) work on range restriction.
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The previous designs are classic examples of intentional missing data that do not neces-
sarily require missing data techniques. The advent of maximum likelihood estimation and 
multiple imputation has prompted methodologists to develop specialized planned missing 
data designs that address a number of practical problems (Graham et al., 2006). For ex-
ample, researchers often face constraints on the number of questionnaire items that they can 
reasonably expect respondents to answer, and this problem becomes more acute in longitu-
dinal studies where respondents fi ll out questionnaire batteries on multiple occasions. Limit-
ing the number of variables is one obvious solution to this problem, but introducing planned 
missing data is another possibility. In a planned missing data design, you distribute the ques-
tionnaire items across different forms and administer a subset of the forms to each respon-
dent. This strategy allows you to collect data on the full set of questionnaire items while 
simultaneously reducing respondent burden.

Planned missingness is not limited to questionnaire data and has a number of other in-
teresting applications. For example, suppose that a researcher wants to use two data collection 
methods, one of which is very expensive. To illustrate, imagine a study in which a researcher 
is collecting brain image data. Ideally, she would like to collect her data using magnetic reso-
nance imaging (MRI), but the MRI is very expensive and she has diffi culty accessing it for 
extended periods. However, she can readily collect data using the less expensive computed 
tomography (CT) scan. Planned missingness is ideally suited for this situation because the 
researcher can collect CT data from every participant and restrict the MRI data to a subset of 
her sample. A similar example occurs with body fat measurements from an exercise physiol-
ogy study. A researcher can readily use a set of calipers to take skinfold measurements from 
all of his subjects but might use a more expensive technique (e.g., air displacement in a BOD 
POD) on a subset of the participants. Importantly, maximum likelihood and multiple impu-
tation allow researchers to analyze data from planned missingness designs without having to 
discard the incomplete cases. For example, the exercise physiologist can use the entire sample 
to estimate the associations between the expensive measure and other study variables, even 
though a subset of the cases has missing data on the expensive measure.

Planned missing data strategies have been available for many years and have a number 
of interesting applications (Johnson, 1992; Lord, 1962; Raghunathan & Grizzle, 1995; Shoe-
maker, 1973). I focus primarily on the planned missing data designs outlined by John Graham 
and his colleagues (Graham et al., 1996; Graham, Taylor, & Cumsille, 2001; Graham et al., 
2006). In particular, the subsequent sections describe a three-form design that is widely ap-
plicable to questionnaire data collection and planned missingness designs for longitudinal 
studies. Readers interested in additional details on planned missingness designs can consult 
Graham et al. (2006).

As an aside, my experience suggests that researchers tend to view the idea of planned 
missing data with some skepticism and are often reluctant to implement this strategy. This 
skepticism probably stems from a presumption that missing data can bias the analysis re-
sults. However, the planned data designs in this section produce MCAR data, so the only 
potential downside is a loss of statistical power. Planned missingness designs are very fl exible 
and allow you to address power concerns by restricting the missing data to certain variables. 
Every research study involves compromises, so you have to decide whether collecting addi-
tional variables offsets the resulting loss of power. Of course, increasing the sample size will 



Cop
yri

gh
t ©

 20
10

 The
 G

uil
for

d P
res

s

 An Introduction to Missing Data 23

always improve power, but this may not be feasible. In any case, planned missing data de-
signs are highly useful and underutilized tools that will undoubtedly increase in popularity as 
researchers become familiar with their benefi ts.

1.11 THE THREE-FORM DESIGN

Researchers in many disciplines use multiple-item questionnaires to measure complex con-
structs. For example, psychologists routinely use several questionnaire items to measure 
depression, each of which taps into a different depressive symptom (e.g., sadness, lack of 
energy, sleep diffi culties, feelings of hopelessness). Using multiple-item questionnaires to 
measure even a relatively small number of variables can introduce a substantial respondent 
burden. Graham et al. (1996) addressed this problem with a three-form design that distrib-
utes a subset of questionnaire items to each respondent. The design divides the item pool 
into four sets (X, A, B, and C) and allocates these sets across three questionnaire forms, such 
that each form includes X and is missing A, B, or C. Table 1.4 shows the distribution of the 
item sets across the three questionnaire forms. Note that each item set can include multiple 
questionnaires or combinations of items from multiple questionnaires (e.g., item set X can 
include a depression questionnaire and a self-esteem questionnaire).

To illustrate the three-form design, suppose that a researcher plans to use eight question-
naires, each of which has 10 items. Concerned that her study participants will not have time 
to complete all 80 questions, she uses a three-form design to reduce respondent burden. 
Table 1.5 shows what the three-form design would look like if the researcher equally distrib-
uted her questionnaires across the four item sets (i.e., she assigns two questionnaires to set 
X, A, B, and C). Notice that the 3-form design allows the researcher to collect data on 80 
questionnaire items, even though any given respondent only answers 60 items. Importantly, 
maximum likelihood estimation and multiple imputation allow the researcher to analyze the 
data without discarding incomplete cases.

The three-form design is fl exible and does not require an equal number of questionnaire 
items in each item set. For example, the researcher could use the three-form design in Table 
1.6 if she wanted to increase the number of variables in the X set, although this would require 
each participant to answer 70 items. In addition, there is no need to group questionnaire 
items together in the same set (e.g., assign all Q1 items to set X), and it is possible to distrib-
ute questionnaire items across more than one item set (e.g., assign fi ve of the Q1 items to set 

TABLE 1.4. Missing Data Pattern for a 
Three-Form Design

 Item sets

Form X A B C

1 ! — ! !
2 ! ! — !
3 ! ! ! —

Note. A check mark denotes complete data.  
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X and the remaining fi ve items to set A). Graham et al. (1996) used a computer simulation 
study to investigate this issue and found that splitting the questionnaire across multiple item 
sets reduced the standard errors from a regression analysis. Despite this slight power advan-
tage, Graham et al. (2006) recommend grouping the questionnaire items together in the same 
item set because this strategy facilitates the statistical analyses, particularly with a large num-
ber of variables.

How Does the Three-Form Design Impact Power?

The main downside of planned data designs is a potential loss of statistical power. Fortu-
nately, you can mitigate this power loss by carefully aligning the questionnaire forms to your 
substantive goals. However, doing so requires an understanding of some of the subtleties of 
the three-form design and its infl uence on statistical power. This section describes a number 
of these subtleties and illustrates the infl uence of planned missing data on statistical power. 
For simplicity, I restrict the subsequent discussion to correlations, but the basic ideas gener-
alize to other analyses. Interested readers can fi nd a more thorough discussion of power in 
Graham et al. (2006).

There are essentially three tiers of power in the three-form design, and the power of a 
given statistical test depends on the particular combination of item sets that are involved. To 
illustrate, reconsider the three-form design in Table 1.5. Table 1.7 shows a covariance cover-
age matrix that gives the percentage of respondents with complete data on a given question-

TABLE 1.5. Missing Data Pattern for a Three-Form Design with Eight Questionnaires

 Item Sets

 X A B C

Form Q1 Q2  Q3 Q4  Q5 Q6  Q7 Q8

1 ! ! ! ! ! ! — —
2 ! ! ! ! — — ! !
3 ! !  — —  ! !  ! !

Items 10 10  10 10  10 10  10 10

Note. A check mark denotes complete data.

TABLE 1.6. Missing Data Pattern for a Three-Form Design with Unequal Item Sets

 Item sets

 X A B C

Form Q1 Q2 Q3 Q4 Q5  Q6  Q7  Q8

1 ! ! ! ! ! ! ! —
2 ! ! ! ! ! ! — !
3 ! ! ! ! !  —  ! !

Items 10 10 10 10 10  10  10  10

Note. A check mark denotes complete data.
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naire (the diagonal elements) or pair of questionnaires (the off-diagonal elements). The entire 
sample has complete data on a single pair of questionnaires (i.e., Q1 and Q2), 15 of the ques-
tionnaire pairs have a 33% missing data rate (e.g., Q1 and Q3), and 12 pairs have 66% missing 
data (e.g., Q3 and Q5). Not surprisingly, the percentages in Table 1.7 have an impact on sta-
tistical power. Analyses that involve two variables from the X set (e.g., the correlation between 
Q1 and Q2) have the highest power because these variables have no missing data. A second 
tier of associations has somewhat less power and includes correlations between an X variable 
and a variable from item set A, B, or C (e.g., the correlation between Q1 and Q3) and relation-
ships between variables within set A, B, or C (e.g., the correlation between Q3 and Q4). Fi-
nally, any correlations between A, B, or C variables (e.g., the correlation between Q3 and Q5) 
will have the lowest power.

With such a large proportion of missing data, you might expect certain associations to 
produce abysmal power. However, this is not necessarily true. To illustrate, I performed two 
computer simulation studies that examined the infl uence of the three-form design on power. 
To mimic the previous research scenario, I generated 5,000 samples of N = 300, each with 
eight normally distributed variables. The fi rst simulation generated variables with a popula-
tion correlation of ρ = .30, and the second simulation generated data from a population with 
ρ = .10. These population correlations correspond to Cohen’s (1988) benchmarks for a 
medium and a small effect size, respectively. I subsequently deleted data according to the 
three-form design in Table 1.5 and then used maximum likelihood missing data handling to 
estimate the sample correlation matrix for each of the 5,000 replicates. Because I generated 
the data from a population with a nonzero correlation, the proportion of the 5,000 replica-
tions that produced a statistically signifi cant correlation is an estimate of power.

Table 1.8 gives the power estimates from the simulation studies. To begin, consider the 
power values from the ρ = .30 simulation. Notice that the correlation between Q1 and Q3 (the 
two X set variables) had a power of 1.00. These variables had complete data, so this power 
estimate serves as a useful benchmark for assessing the impact of planned missingness. It 
may be somewhat surprising and counterintuitive to fi nd that the decrease in power was not 

TABLE 1.7. Covariance Coverage Matrix for a Three-Form Design 

 Item set

 X A B C

Set Scale Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

X Q1 100%         
 Q2 100% 100%            

A Q3  66%  66% 66%          
 Q4  66%  66% 66% 66%        

B Q5  66%  66% 33% 33% 66%      
 Q6  66%  66% 33% 33% 66% 66%    

C Q7  66%  66% 33% 33% 33% 33% 66%
 Q8  66%  66% 33% 33% 33% 33% 66% 66%

Note. The percentages represent the amount of complete data for a variable or variable pair.
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commensurate with overall reduction in sample size. For example, consider the correlation 
between Q1 and Q3. A 33% missing data rate on Q3 produced a 1% drop in power. The cor-
relation between Q3 and Q5 is even more remarkable because one-third of the sample had 
complete data on this variable pair, yet power decreased by only 10%. The fact that power did 
not decrease dramatically is largely a by-product of maximum likelihood estimation. As you 
will see in Chapter 4, maximum likelihood uses the entire sample to estimate the parameters, 
so estimation effectively borrows information from the observed data to estimate the param-
eters of the incomplete variables (e.g., cases with missing Q3 scores have Q1 data that can 
help estimate the correlation between Q1 and Q3). Consequently, the loss of power from a 
planned missing data design is not necessarily as extreme as you might expect.

Next, consider the power estimates from the ρ = .10 simulation. In this situation, the 
correlation between the two complete variables (i.e., Q1 and Q2) had a power value of .41. 
Again, this power estimate serves as a useful benchmark for assessing the impact of planned 
missingness. Consistent with the previous simulation results, the decrease in power was not 
commensurate with overall reduction in sample size, although it was more nearly so. For 
example, the variable pairs with 33% missing data had an average power decrease of approxi-
mately 28%, while power dropped by roughly 55% for the variable pairs with a 66% missing 
data rate. In this simulation, relatively weak correlations limited the amount of information 
that maximum likelihood could borrow from the observed data, so the drop in power more 

TABLE 1.8. Correlation Power Estimates from a Three-Form Design

 Item set

 X A B C

ρ Set Scale Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0.3 X Q1 —              
  Q2 1.00 —            

 A Q3  .99 .99 —          
  Q4  .99 .99 .99 —        

 B Q5  .99 .99 .90 .90 —      
  Q6  .99 .99 .90 .90 .99 —    

 C Q7  .99 .99 .91 .91 .90 .91 —
  Q8  .99 .99 .90 .91 .91 .90 .99 —

0.1 X Q1 —              
  Q2  .41 —            

 A Q3  .29 .30 —          
  Q4  .30 .30 .28 —        

 B Q5  .30 .30 .18 .18 —      
  Q6  .30 .30 .19 .18 .29 —    

 C Q7  .30 .31 .20 .19 .19 .18 —
  Q8  .29 .29 .18 .18 .18 .19 .29 —
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closely approximates the missing data rate. As a rule, the impact of missing data on power 
will diminish as the correlations among the variables increase in magnitude.

Increasing the number of variables in the X set is one way to improve the power of a 
planned missingness design because it will increase the number of hypotheses that you can 
test with the full sample. Fortunately, the three-form design is fl exible and does not require 
an equal distribution of questionnaire items across the four item sets. For example, the three-
form design in Table 1.6 assigns fi ve questionnaires to the X set and one questionnaire to 
each of the remaining sets. This design dramatically increases the number of variable pairs 
with complete data and decreases the number of tests with low power. Effect size is another 
factor that you can use to manipulate the power of a planned missing data design. For ex-
ample, variables that you expect to produce a large effect size are good candidates for the A, 
B, or C set because they have lower sample size requirements. Conversely, you should con-
sider placing a variable in the X set if you expect it to produce a small effect size because 
doing so will maximize power. Implementing a planned missingness design clearly requires 
some careful preparation, but these designs are very fl exible and allow you to balance sub-
stantive and power concerns. Graham et al. (2006) provide additional details on the power 
of a three-form design.

Estimating Interaction Effects from a Three-Form Design

There are a number of nuances to consider when deciding how to distribute questionnaires 
across the four item sets. The previous section clearly suggests that the placement of a ques-
tionnaire infl uences statistical power. Questionnaire placement becomes even more critical 
when the goal is to estimate interaction effects. Unlike some planned missing data designs, 
the three-form design allows you to estimate every zero-order association in the data. How-
ever, the design does have limitations for testing higher-order effects.

Returning to the three-form design in Table 1.5, suppose that the researcher wants to 
examine whether Q5 moderates the relationship between Q3 and Q7 (i.e., a B variable moder-
ates the association between an A variable and a C variable). One way to address this ques-
tion is to estimate a regression model with Q3, Q5, and the Q3Q5 product term as predictors 
of Q7 (Aiken & West, 1991). However, it is impossible to estimate this regression model from 
the three-form design in Table 1.5. To illustrate the problem, Table 1.9 shows the missing 
data patterns that result when you form a product term between an A variable and a B vari-
able (e.g., the Q3Q5 product term). Notice that one-third of the sample has complete data on 
both A and B (and thus the AB product term), but this subset of cases does not have data on 
the criterion variable from the C set. Consequently, there is no way to estimate the association 
between the outcome variable and the product term.

The three-form design does allow for two-way interactions, but one or more of the analy-
sis variables must be from the X set (it does not matter whether this variable is a predictor or 
the criterion). To illustrate, suppose that an X variable moderates the association between a 
B variable and a C variable (e.g., a regression model with X, B, and the XB product term as 
predictors of C). Table 1.9 shows the missing data patterns for this new confi guration of vari-
ables. Notice that every bivariate relationship among the regression model variables appears 



Cop
yri

gh
t ©

 20
10

 The
 G

uil
for

d P
res

s

28 APPLIED MISSING DATA ANALYSIS

in at least one questionnaire form, so it is now possible to estimate the model. Not surpris-
ingly, questionnaire placement becomes more complex with three-way interactions. The three-
form design does allow you to estimate certain three-way interactions, but the X set must 
include the criterion variable and at least one of the predictor variables.

1.12 PLANNED MISSING DATA FOR LONGITUDINAL DESIGNS

The problem of respondent burden can be particularly acute in longitudinal studies where 
participants fi ll out questionnaire batteries on multiple occasions. Graham et al. (2001) 
 applied the logic of the three-form design to longitudinal data and investigated the power 
of several planned missingness designs. The basic idea behind these designs is to split the 
sample into a number of random subgroups and impose planned missing data patterns on 
each subgroup. Table 1.10 is an example of one such design where the random subgroups 
have missing data at a single wave.

Graham et al. (2001) outlined a number of planned missing data designs and examined 
each design’s power to detect an intervention effect in a longitudinal analysis. The design in 
Table 1.10 was 94% as powerful as a complete-data analysis, but there were other designs 
that produced comparable power with fewer data points. For example, Table 1.11 shows a 
design that was 91% as powerful as a complete-data analysis but eliminated 44% of the total 
data points. (By data points, I mean the total number of observations in the data matrix.) The 
interesting thing about these results is that the planned missing data designs were actually 

TABLE 1.9. Missing Data Pattern for a Three-Form Design with 
Interaction Terms 

  Interaction
 Item sets terms

Form X A B C  AB XB

1 ! — ! ! — !
2 ! ! — ! — —
3 ! ! ! —  ! !

Note. A check mark denotes complete data.

TABLE 1.10. Planned Missing Data Pattern 1 for a Longitudinal Design

 Data collection wave

Group 1 2 3 4 5 % of N

1 ! ! ! ! ! 16.7
2 ! ! ! ! — 16.7
3 ! ! ! — ! 16.7
4 ! ! — ! ! 16.7
5 ! — ! ! ! 16.7
6 — ! ! ! ! 16.7

Note. A check mark denotes complete data.
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more powerful than a complete-data design that used the same number of data points. This 
has important implications for designing a longitudinal study. For example, suppose that 
each assessment (i.e., data point) costs $50 to administer and your grant budget allows you 
to collect 1,000 assessments. Graham et al.’s simulation results suggest that collecting com-
plete data from N participants will actually yield less power than collecting incomplete data 
from a larger number of respondents.

The Graham et al. (2001) designs are particularly useful for studies that examine change 
following an intervention or a treatment. However, many researchers are interested in devel-
opmental processes that involve age-related change (e.g., the development of reading skills in 
early elementary school, the development of religiousness throughout the life span, the de-
velopment of behavioral problems during the teenage years). The so-called cohort-sequential 
design (Duncan, Duncan, & Hops, 1996; Nesselroade & Baltes, 1979) is a common planned 
missing data design that is ideally suited for this type of research question.

The basic idea behind the cohort-sequential design is to combine a number of short-
term longitudinal studies into a single longitudinal data analysis. You do this by sampling 
different age cohorts at the initial data collection wave and following each cohort over the 
same period. Table 1.12 shows the cohort-sequential design from a 3-year study of teenage 
alcohol use (Duncan et al., 1996). Notice that each age cohort has three waves of intentional 
missing data (e.g., the 12-year-olds have missing data at ages 15, 16, and 17, the 13-year-olds 
have missing data at ages 12, 16, and 17, and so on). Maximum likelihood missing data 
handling allows you to combine data from multiple cohorts into a single data analysis, so you 
can examine change over a developmental span that exceeds the data collection period. For 
example, Duncan et al. (1996) used the design in Table 1.12 to examine the change in alco-
hol use over the 5-year period between ages 12 and 17. Like other planned missingness de-
signs, the cohort-sequential design yields MCAR data.

The cohort-sequential design is extremely useful for developmental research but has an 
important limitation. Unlike the other designs in this section, the cohort-sequential design 
includes variable pairs that are completely missing. For example, the design in Table 1.12 
yields missing data for six variable pairs: ages 12 and 15, 12 and 16, 12 and 17, 13 and 16, 
13 and 17, and 14 and 17. These missing data patterns pose no problem for a longitudinal 
growth curve analysis, but they limit your ability to estimate zero-order correlations. The only 
way to eliminate this problem is to collect data across the entire developmental span, but this 

TABLE 1.11. Planned Missing Data Pattern 2 for a Longitudinal Design

 Data collection wave

Group 1 2 3 4 5 % of N

1 ! ! ! ! !  9.1
2 ! ! ! — — 10.1
3 ! ! — ! — 10.1
4 ! — ! ! — 10.1
5 ! ! — — ! 20.2
6 ! — ! — ! 20.2
7 ! — — ! ! 20.2

Note. A check mark denotes complete data.
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defeats the purpose of the design. Despite this important limitation, the cohort-sequential 
design is a useful tool for examining age-related change that is quite common, particularly in 
psychological research. As an aside, the fact that certain correlations are inestimable rules out 
multiple imputation as a missing data handling technique for this design (the sample covari-
ance matrix plays an integral role in the imputation process). This problem is not a concern 
when using maximum likelihood to estimate a growth curve model.

1.13 CONDUCTING POWER ANALYSES FOR PLANNED MISSING 
DATA DESIGNS

Estimating power is one of the diffi culties associated with implementing a planned missing 
data design. The power loss in these designs is generally not proportional to the decrease in 
the sample size and depends on the magnitude of the correlations among the methods. This 
makes it very diffi cult to get accurate power estimates from standard analysis techniques. 
Researchers have outlined power analysis techniques that account for missing data, but these 
approaches are limited in scope (Hedeker, Gibbons, & Waternaux, 1999; Tu et al., 2007). 
Monte Carlo computer simulations are a useful alternative that you can use to estimate power 
for virtually any analysis. This section describes how to use computer simulations to estimate 
power for the three-form design, but the basic approach generalizes to any number of power 
analyses, with or without missing data. Paxton, Curran, Bollen, Kirby, and Chen (2001) give 
a more detailed overview of Monte Carlo methodology, and Muthén and Muthén (2002) il-
lustrate Monte Carlo power simulations.

A Monte Carlo simulation generates a large number of samples from a population with 
a hypothesized set of parameter values. Estimating a statistical model on each artifi cial sam-
ple and saving the resulting parameter estimates yield an empirical sampling distribution for 
each model parameter. The ultimate goal of a power simulation is to determine the propor-
tion of statistically signifi cant parameter estimates in this distribution. Many statistical soft-
ware packages have built-in data generation routines that do not require much programming, 
so it is relatively straightforward to perform power simulations. Structural equation modeling 
packages are particularly useful because they offer a variety of different data generation and 
analysis options. Some of these packages also have a number of built-in routines for simulat-
ing missing data.*

*Analysis syntax is available on the companion website, www.appliedmissingdata.com.

TABLE 1.12. Missing Data Pattern for a Cohort-Sequential Design

 Yearly data collection points

Cohort 12 13 14 15 16 17

12 ! ! ! — — —
13 — ! ! ! — —
14 — — ! ! ! —
15 — — — ! ! !

Note. A check mark denotes complete data.
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The fi rst step of a computer simulation is to specify the population parameters. In my 
previous power simulations, I specifi ed eight standardized variables from a normally distrib-
uted population with correlations of ρ = .10 and .30. This is a very straightforward data 
generation model, but specifying the population parameters is typically the most diffi cult 
aspect of a computer simulation. For example, a Monte Carlo power analysis for a regression 
model requires population values for all model parameters (i.e., the regression coeffi cients, 
correlations among predictors, and residual variance). This is not unique to Monte Carlo 
power simulations, and standard power analyses effectively require the same information 
expressed in the form of an effect size. For example, Cohen’s (1988) approach converts the 
regression model parameters into an f 2 effect size metric. The population correlations that I 
used are convenient because they align with Cohen’s small and medium effect size bench-
marks, but deriving parameter values from published research studies or meta-analyses is a 
much better approach.

The next step of the simulation process is to generate a large number of samples from 
the specifi ed population model. For example, my previous simulations generated 5,000 sam-
ples of N = 300 cases each. Software packages with built-in Monte Carlo routines typically 
require only a couple of key words or commands to specify the number of samples and the 
size of each sample. Simulating missing values can be a diffi cult aspect of a power simulation. 
Some software packages have built-in routines for generating missing data, whereas others 
do not. Again, structural equation modeling packages are particularly useful because some 
programs offer a number of options for simulating missing data. The availability of such a 
routine may be a factor to consider when choosing a software package.

The next step of the simulation is to estimate a statistical model on each artifi cial data 
set. In my previous power simulations, I used maximum likelihood missing data handling to 
estimate the correlation matrix for each of the 5,000 samples. As you will see in Chapter 4, 
maximum likelihood estimation is very easy to implement and typically requires only a single 
additional key word or line of code. Maximum likelihood missing data handling is imple-
mented in virtually every structural equation modeling program, and I rely heavily on these 
packages throughout the book.

Describing the empirical sampling distribution of the parameter estimates is the fi nal step 
of a computer simulation. For the purpose of a power analysis, you would always generate 
the data from a population where the null hypothesis is false (e.g., the population correlation 
is nonzero). Consequently, power is the proportion of samples that produce a statistically 
signifi cant parameter estimate. Programs that have built-in Monte Carlo facilities often report 
the proportion of signifi cant replications as part of their standard output, so obtaining the 
power estimates often requires no additional programming.

Using Monte Carlo simulations to estimate power sounds tedious, but software pack-
ages tend to automate the process. Generating the power estimates in Table 1.8 was actually 
quite easy and took just a few lines of code. Specifying reasonable values for the population 
parameters is by far the most time-consuming part of the process. Once you write the pro-
gram, the software package automatically generates the data, estimates the model, and sum-
marizes the simulation results. For many common statistical models, this entire process takes 
just a few minutes to complete.

As an aside, you can also use standard analysis techniques to estimate the power 
for planned missingness designs (Graham et al., 2006, p. 340), but this is a less accurate 
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approach. As an illustration, reconsider the three-form design in Table 1.5. Suppose that you 
were considering a total sample size of N = 300 and wanted to estimate power for the correla-
tion between Q3 and Q5 (an A variable and a B variable). This portion of the design has 66% 
missing data, so you could simply use N = 100 to estimate power. The power of a two-tailed 
signifi cance test with α = .05 and ρ = .30 is approximately .86 (Cohen, 1988, p. 93). Stan-
dard power analyses do not account for the fact that maximum likelihood estimation borrows 
strength from other analysis variables, so they underestimate the true power (e.g., the Monte 
Carlo power estimate in Table 1.8 is slightly higher at .90). Nevertheless, standard power 
analysis methods are a viable option for generating conservative power estimates.

1.14 DATA ANALYSIS EXAMPLE

This section presents a data analysis example that illustrates how to use MCAR tests to iden-
tify potential correlates of missingness.* The analyses use artifi cial data from a questionnaire 
on eating disorder risk. Briefl y, the data contain the responses from 400 college-aged women 
on 10 questions from the Eating Attitudes Test (EAT; Garner, Olmsted, Bohr, & Garfi nkel, 
1982), a widely used measure of eating disorder risk. The 10 questions measure two con-
structs, Drive for Thinness (e.g., “I avoid eating when I’m hungry”) and Food Preoccupation 
(e.g., “I fi nd myself preoccupied with food”), and mimic the two-factor structure proposed 
by Doninger, Enders, and Burnett (2005). Figure 4.3 shows a graphic of the EAT factor struc-
ture and abbreviated descriptions of the item stems. The data set also contains an anxiety 
scale score, a variable that measures beliefs about Western standards of beauty (e.g., high 
scores indicate that respondents internalize a thin ideal of beauty), and body mass index 
(BMI) values.

Variables in the EAT data set are missing for a variety of reasons. I simulated MCAR data 
by randomly deleting scores from the anxiety variable, the Western standards of beauty scale, 
and two of the EAT questions (EAT2 and EAT21). It seems reasonable to expect a relationship 
between body weight and missingness, so I created MAR data on fi ve variables (EAT1, EAT10, 
EAT12, EAT18, and EAT24) by deleting the EAT scores for a subset of cases in both tails of the 
BMI distribu  tion. These same EAT questions were also missing for individuals with elevated 
anxiety scores. Finally, I introduced a small amount of MNAR data by deleting a number of 
the high body mass index scores (e.g., to mimic a situation where females with high BMI 
values refuse to be weighed). The deletion process typically produced a missing data rate of 
5 to 10% on each variable.

I began the analysis by computing Little’s (1988) MCAR test. The test was statistically 
signifi cant, χ2(489) = 643.32, p < .001, which indicates that the missing data patterns pro-
duced mean differences that are inconsistent with the MCAR mechanism. This is an appro-
priate conclusion given that a number of variables in the data set are either MAR or MNAR. 
Little’s procedure is essentially an omnibus test that evaluates whether all of the missing data 
patterns in a data set are mutually consistent with the MCAR mechanism. Consequently, the 
test is not particularly useful for identifying individual variables that are potential correlates 
of missingness.

*Analysis syntax and data are available on the companion website, www.appliedmissingdata.com.
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A more focused approach for testing MCAR is to classify individuals as observed or miss-
ing on a particular variable and then test for group mean differences on other measured 
variables (Dixon, 1988). To illustrate, I created a missing data indicator for each of the seven 
incomplete EAT questionnaire items, such that r = 1 if an individual’s score was observed 
and r = 0 if the value was missing. I then used each indicator as the grouping variable in a 
series of independent t tests that compared the means of the remaining variables. Table 1.13 
shows the t statistics and the standardized mean difference values for these comparisons. 
The table lists the grouping variables (i.e., the missing data indicators) in the rows and uses 
bold typeface to denote the t statistics that exceed an approximate critical value of plus or 
minus two. I computed the standardized mean difference values by dividing the raw mean 
difference by the maximum likelihood estimate of the standard deviation. Cohen (1988) sug-
gested values of .20, .50, and .80 as thresholds for a small, medium, and large standardized 
mean difference, respectively.

Table 1.13 illustrates several important points. To begin, 20 of the 91 t statistics are 
statistically signifi cant, and several others are very nearly so. You would expect a collection of 
tests this large to produce about fi ve type I errors, so the sheer number of signifi cant com-
parisons provides compelling evidence that the EAT variables are not MCAR. Again, this is 
an appropriate conclusion given that fi ve of the questionnaire items are MAR. Although the 
t tests correctly rule out the MCAR mechanism, they do a poor job of identifying the cause 
of missing data. For example, notice that several pairs of EAT variables produced signifi cant 
t tests. In reality, the probability of missing data is solely a function of body mass index and 
anxiety, so these results are a spurious by-product of the mutual associations among the 
variables. Finally, notice that the t tests fail to identify body mass index as a cause of missing-
ness on the fi ve EAT variables with MAR data. Deleting the EAT scores for cases in both tails 
of body mass index distribution produced missing data groups with roughly equal BMI 
means. It is therefore not surprising that the t tests fail to identify the relationship between 
body mass index and missingness. Any test that evaluates homogeneity of means would fail 
to detect BMI as a correlate of missingness, so this underscores the fact that these procedures 
are not defi nitive tests of MCAR.

The primary benefi t of performing MCAR tests is to identify potential correlates of miss-
ingness (i.e., auxiliary variables) that you can subsequently incorporate into the missing data 
handling procedure. The t tests are useful in this regard because they identify specifi c vari-
ables that are not MCAR. To illustrate, suppose that the ultimate analysis goal is to fi t a 
confi rmatory factor analysis model to the EAT questionnaire data. The MAR assumption is 
automatically satisfi ed if missingness on an EAT variable is related to another questionnaire 
item in the factor model. Consequently, you can ignore any t test that has an EAT question 
as the outcome because these correlates of missingness are already in the analysis. The bigger 
concern is whether probability of missing data relates to variables outside of the analysis 
model because excluding these correlates of missingness violates the MAR assumption and 
can produce biased parameter estimates. For example, the t test results in the three right-
most columns of Table 1.13 suggest that body mass index, anxiety, and beliefs about Western 
standards of beauty are potential correlates of missingness because each variable is signifi -
cantly related to at least one of the EAT indicators. In truth, the Western standards of beauty 
variable is unrelated to missingness, but Collins et al. (2001) showed that mistakenly using an 
auxiliary variable that is unrelated to missingness has no negative impact on the subsequent 
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analysis results. This suggests that you can be liberal when using the t tests to identify poten-
tial correlates of missingness because there is ultimately no harm in committing a type I error. 
However, my experience suggests that there is little benefi t to using a large number of auxil-
iary variables. Consequently, you may want to identify a small set of variables that produce 
the largest standardized mean difference values.

1.15 SUMMARY

This chapter described some of the fundamental concepts that you will encounter repeatedly 
throughout the book. In particular, the fi rst half of the chapter outlined missing data theory. 
Rubin (1976) and colleagues (Little & Rubin, 2002) introduced a classifi cation system for 
missing data problems that is widely used in the literature today. This work has generated 
three so-called missing data mechanisms that describe how the probability of a missing value 
relates to the data, if at all. First, data are MAR when the probability of missing data on a 
variable Y is related to some other measured variable (or variables) but not to the values of 
Y itself. Second, the MCAR mechanism is stricter because it requires that the probability of 
missing data on a variable Y is unrelated to other measured variables and to the values of Y 
itself (i.e., the observed scores are a random sample of the hypothetically complete data set). 
Finally, the data are MNAR when the probability of missing data on a variable Y is related to 
the values of Y itself, even after controlling for other variables.

Rubin’s missing data mechanisms are important because they essentially operate as 
assumptions that govern the performance of different missing data handling methods. For 
example, most of the ad hoc missing data techniques that researchers have been using for 
decades (e.g., discarding cases with incomplete data) require MCAR data. In contrast, the 
two state-of-the-art techniques—maximum likelihood estimation and multiple imputation—
require the less stringent MAR assumption. Rubin’s mechanisms are of great practical impor-
tance because all missing data techniques produce biased parameter estimates when their 
requisite assumptions do not hold.

The second half of the chapter introduced the idea of planned missing data. Researchers 
have proposed a number of designs that produce MCAR or MAR data as an intentional by-
product of data collection. These so-called planned missingness designs use benign missing 
data to solve a number of practical problems. Among other things, planned missing data 
can reduce respondent burden in questionnaire designs, lower the cost associated with data 
collection, and diminish the data collection burden in longitudinal designs. Maximum like-
lihood and multiple imputation allow researchers to analyze data from planned missingness 
designs without having to discard the incomplete cases, and the power loss from the miss-
ing data is generally not proportional to the missing data rate. Planned missing data designs 
are highly useful and underutilized tools that will undoubtedly increase in popularity in the 
future.

Having established the basic theory behind missing data analyses, in the next chapter I 
describe a number of traditional missing data techniques that are still common in published 
research articles. These approaches typically assume an MCAR mechanism and yield biased 
parameter estimates with MAR and MNAR data. The methods in Chapter 2 have increasingly 
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fallen out of favor in recent years, but the widespread availability and use of these techniques 
make it important to understand when and why they fail.
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